数列(7)数列的综合应用A1、已知{}na是公比为q的等比数列,nS是{}na的前n项和,且369SS,若正数,ab满足249ab,则2112ab的最小值为()A.2B.322C.52D.32142、已知nS是等差数列{}na的前n项和,244,20aS,若12,,kkaaS成等比数列,则正整数k()A.3B.4C.5D.63、已知数列{}na的前n项和为2nSn,则38aa的值是()A.200B.100C.20D.104、设nS是等差数列{}na的前n项和,已知23a,611a,则7S等于()A.13B.35C.49D.635、已知数列{}na满足112,02121,12nnnnnaaaaa若135a,则数列的第2018项为()A.15B.25C.35D.456、已知等比数列{}na的各项均为正数,且817654aaaa,则103332313loglogloglogaaaa()A.10B.12C.31log5D.32log57、数列{}na的前n项和253(N)nSnnn,则有()A.1nnSnanaB.1nnSnanaC.1nnnaSnaD.1nnnaSna8、设nS为等差数列{}na的前n项和,且2018201612018,220182016SSa,则2a()A.-2016B.-2018C.2018D.20169、已知等比数列{}na的前三项依次为1a,1a,4a,则na()A.34()2nB.24()3nC.124()3nD.134()2n10、定义:在数列{}na中,若满足211(N,nnnnaadndaa为常数),称{}na为“等差比数列”.已知在“等差比数列”{}na中,1231,3aaa,则20142012aa()A.2420121B.2420131C.2420141D.24201311、记nS为数列na的前n项和,若21nnSa,则7S_____________.12、设,xy为正数,且12,,,xaay成等差数列12,,,xbby成等比数列,则21212()aabb的最小值是__________。13、数列na的前n项和为nS,且1122,33nnaaS,用x表示不超过x的最大整数,如[0.4]1,[1.6]1,设[]nnba,则数列nb的前2n项和为__________.14、已知nS为数列na的前n项和,22nnSa,若254nS,则n__________15、已知nS是正项数列na的前n项和,2*2112,2NnnnaSaan.1.证明:数列na是等差数列;2.设*N2nnnabn,求数列nb的前n项和nT.答案以及解析1答案及解析:答案:A解析:2答案及解析:答案:D解析:3答案及解析:答案:C解析:4答案及解析:答案:C解析:5答案及解析:答案:A解析:6答案及解析:答案:A解析:7答案及解析:答案:D解析:当2n时221535(1)3(1)68nnnaSSnnnnn,当1n时12a,所以68nan,因为2253(86)333(1)0,nnnnSnannnnnnnnSna,因为2211532333(1)0,nnSnannnnnnnSna,综上1nnnaSna选D.8答案及解析:答案:A解析:9答案及解析:答案:D解析:10答案及解析:答案:A解析:1231,3aaa,32212aaaa,1{}nnaa是以1为首项,2为公差的等差数列,121nnana,2201420142013201220132012(220131)(220121)420121aaaaaa.故选:A.11答案及解析:答案:-127解析:12答案及解析:答案:4解析:由等差数列的性质知12aaxy;由等比数列的性质知12bbxy,所以2222221212()()22224aaxyxyxyxyxybbxyxyxyxy,当且仅当xy时取等号.故答案为:4.13答案及解析:答案:212233nn解析:由1122,33nnaaS①可得2121224,333aSaa,则可得12,23nnaSn②,由1nnnaSS,①-②可得12nnaa则22241223233nnnnaa上式对1n也成立则112,233nnnnnaba当1n时,31222011133bb当2n时,512342201258233bbbb;当3n时,7123456220125102139333bbbbbb;当4n时,91234567822012510214285166433bbbbbbbb;...,则数列nb的前2n项和为21123421222...33nnnbbbbbbn.14答案及解析:答案:7解析:15答案及解析:答案:1.当2n时,有2112122nnnnnnSaaSaa∴22112nnnnnaaaaa,∴111nnnnnnaaaaaa又∵0na,∴11nnaa当1n时,有212222Saa∴11a,∴211daa∴数列na是以11a为首项,1d为公差的等差数列2.由1及2,得nan,∴2nnnb,则123123*2222nnnT,2311121+**22222nnnnnT12311111111111122***:1122222222212nnnnnnnnnnT∴111222222nnnnnnnT解析: