8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°考点:菱形的性质.分析:依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠ADE,从而求解.解答:解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选C.点评:本题是简单的推理证明题,主要考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质.已知菱形ABCD的边长是8,点E在直线AD上,若DE=3,连接BE与对角线AC相交于点M,则MCAM的值是.6.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是【】A、3公里B、4公里C、5公里D、6公里图1MEDBCA图2MEDBCA显示对象7.如图,已知菱形ABCD的边长为2,∠BAD=60°,若DE⊥AB,垂足为点E,则DE的长为▲.2.如图,已知菱形ABCD的边长为2,∠BAD=60°,若DE⊥AB,垂足为点E,则DE的长为▲.例5.如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂直平分线分别与AD、BC相交于点E、F,连接AF。求证:AE=AF。【答案】证明:连接CE。∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠FCO,。又∵AO=CO,∴△AEO≌△CFO(AAS)。∴AE=CF。∴四边形AECF是平行四边形。又∵EF⊥AC,∴平行四边形AECF是菱形。∴AE=AF。【考点】菱形的判定和性质,平行的性质,全等三角形的判定和性质。【分析】由已知,根据AAS可证得△AEO≌△CFO,从而得AE=CF。根据一组对边平行且相等的四边形是平行四边形的判定可得四边形AECF是平行四边形。由EF⊥AC,根据对角线互相垂直的平行四边形是菱形的判定得平行四边形AECF是菱形。根据菱形四边相等的性质和AE=AF。3.如图,菱形ABCD的周长为20cm,且tan∠ABD=43,则菱形ABCD的面积为▲cm2.例1.如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’FCD时,CFFD的值为【】A.312B.36C.2316D.318【答案】A。【考点】翻折变换(折叠问题),菱形的性质,平行的性质,折叠的性质,锐角三角函数定义,特殊角的三角函数值。【分析】延长DC与A′D′,交于点M,∵在菱形纸片ABCD中,∠A=60°,∴∠DCB=∠A=60°,AB∥CD。∴∠D=180°-∠A=120°。根据折叠的性质,可得∠A′D′F=∠D=120°,∴∠FD′M=180°-∠A′D′F=60°。∵D′F⊥CD,∴∠D′FM=90°,∠M=90°-∠FD′M=30°。∵∠BCM=180°-∠BCD=120°,∴∠CBM=180°-∠BCM-∠M=30°。∴∠CBM=∠M。∴BC=CM。设CF=x,D′F=DF=y,则BC=CM=CD=CF+DF=x+y。∴FM=CM+CF=2x+y,在Rt△D′FM中,tan∠M=tan30°=DFy3FM2xy3,∴3-1xy2。∴CFx3-1FDy2。故选A。例2.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=1200,③AH+CH=DH,④AD2=OD·DH中,正确的是【】.A.①②④B.①②③C.②③④D.①②③④【答案】D。【考点】菱形的性质,等边三角形的判定和性质,全等、相似三角形的判定和性质,三角形内角和定理,四点共圆的判定,圆周角定理。【分析】∵菱形ABCD中,AB=AC,∴△ABC是等边三角形。∴∠B=∠EAC=600。又∵AE=BF,∴△ABF≌△CAE(SAS)。结论①正确。∵△ABF≌△CAE,∴∠BAF=∠ACE。∴∠AHC=1800-(∠ACE+∠CAF)=1800-(∠BAF+∠CAF)=1800-∠BAC=1800-600=1200。结论②正确。如图,在HD上截取HG=AH。∵菱形ABCD中,AB=AC,∴△ADC是等边三角形。∴∠ACD=∠ADC=∠CAD=600。又∵∠AHC=1200,∴∠AHC+∠ADC=1200+600=1800。∴A,H,C,D四点共圆。∴∠AHD=∠ACD=600。∴△AHG是等边三角形。∴AH=AG,∠GAH=600。∴∠CAH=600-∠CAG=∠DAG。又∵AC=AD,∴△CAH≌△DAG(SAS)。∴CH=DG。∴AH+CH=HG+DG=DH。结论③正确。∵∠AHD=∠OAD=600,∠ADH=∠ODA,△ADH∽△ODA。∴ADHDODAD。∴AD2=OD·DH。结论④正确。综上所述,正确的是①②③④。故选D。例5.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.【答案】解:(1)∵四边形ABCD是菱形,∴AB∥CD。∴∠1=∠ACD。∵∠1=∠2,∴∠ACD=∠2。∴MC=MD。∵ME⊥CD,∴CD=2CE。∵CE=1,∴CD=2。∴BC=CD=2。(2)证明:∵F为边BC的中点,∴BF=CF=12BC。∴CF=CE。∵在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD。在△CEM和△CFM中,∵CE=CF,∠ACB=∠ACD,CM=CM,∴△CEM≌△CFM(SAS),∴ME=MF。延长AB交DF于点G,∵AB∥CD,∴∠G=∠2。∵∠1=∠2,∴∠1=∠G。∴AM=MG。在△CDF和△BGF中,∵∠G=∠2,∠BFG=∠CFD,BF=CF,∴△CDF≌△BGF(AAS)。∴GF=DF。由图形可知,GM=GF+MF,∴AM=DF+ME。【考点】菱形的性质,平行的性质,等腰三角形的判定和性质,全等三角形的判定和性质。【分析】(1)根据菱形的对边平行可得AB∥D,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度。(2)先利用SAS证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用AAS证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证。例3.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【】A.1B.3C.2D.3+1【答案】B。【考点】菱形的性质,线段中垂线的性质,三角形三边关系,垂直线段的性质,矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。【分析】分两步分析:(1)若点P,Q固定,此时点K的位置:如图,作点P关于BD的对称点P1,连接P1Q,交BD于点K1。由线段中垂线上的点到线段两端距离相等的性质,得P1K1=PK1,P1K=PK。由三角形两边之和大于第三边的性质,得P1K+QK>P1Q=P1K1+QK1=PK1+QK1。∴此时的K1就是使PK+QK最小的位置。(2)点P,Q变动,根据菱形的性质,点P关于BD的对称点P1在AB上,即不论点P在BC上任一点,点P1总在AB上。因此,根据直线外一点到直线的所有连线中垂直线段最短的性质,得,当P1Q⊥AB时P1Q最短。过点A作AQ1⊥DC于点Q1。∵∠A=120°,∴∠DAQ1=30°。又∵AD=AB=2,∴P1Q=AQ1=AD·cos300=3233。综上所述,PK+QK的最小值为3。故选B。