三角函数公式大全锐角三角函数任意角三角函数图形直角三角形任意角三角函数正弦(sin)余弦(cos)正切(tan或tg)余切(cot或ctg)正割(sec)余割(csc)表格参考资料来源:现代汉语词典[1]。2同角三角函数关系编辑倒数关系:商的关系:平方关系:3特殊值:sin30°=1/2sin37°=0.6sin45°=√2/2sin60°=√3/2cos30°=√3/2cos37°=0.8cos45°=√2/2cos60°=1/2tan30°=√3/3tan37°=3/4tan45°=1tan60°=√3[2]cot30°=√3cot37°=4/3cot45°=1cot60°=√3/3tan15°=2-√3tan75°=2+√3sin18°=(√5-1)/4(这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)sin15°=(√6-√2)/4cos15°=(√6+√2)/4这个值在高中竞赛和自招中会比较有用,即黄金分割的一半sin75°=(√6+√2)/4sin18°=(√5-1)/44诱导公式:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:公式三:任意角-α与α的三角函数值之间的关系:公式四:π-α与α的三角函数值之间的关系:公式五:2π-α与α的三角函数值之间的关系:公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαcot(3π/2+α)=-tanαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα,一般不用诱导公式记背诀窍:奇变偶不变,符号看象限。[3]5三角基本公式:和差角公式和差化积口诀:正加正,正在前,余加余,余并肩正减正,余在前,余减余,负正弦积化和差倍角公式二倍角三倍角[4]三倍角公式推导sin(3a)→3sina-4sin^3a=sin(a+2a)=sin2acosa+cos2asina=2sina(1-sin^2a)+(1-2sin^2a)sina=3sina-4sin^3acos3a→4cos^3a-3cosa=cos(2a+a)=cos2acosa-sin2asina=(2cos^2a-1)cosa-2(1-cos^2a)cosa=4cos^3a-3cosasin3a→4sinasin(60°+a)sin(60°-a)=3sina-4sin^3a=4sina(3/4-sin^2a)=4sina[(√3/2)-sina][(√3/2)+sina]=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]=4sinasin(60°+a)sin(60°-a)cos3a→4cosacos(60°-a)cos(60°+a)=4cos^3a-3cosa=4cosa(cos^2a-3/4)=4cosa[cos^2a-(√3/2)^2]=4cosa(cosa-cos30°)(cosa+cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)tan3a→tanatan(60°-a)tan(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)三倍角sin3α=3sinα-4sin^3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cos^3α-3cosα=4cosα·cos(π/3+α)cos(π/3-α)tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tana·tan(π/3+a)·tan(π/3-a)其他多倍角四倍角sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=(-1+2*cosA)*(16*cosA^4-16*cosA^2+1)tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)七倍角sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)n倍角根据棣莫弗定理,(cosθ+isinθ)^n=cos(nθ)+isin(nθ)为方便描述,令sinθ=s,cosθ=c考虑n为正整数的情形:cos(nθ)+isin(nθ)=(c+is)^n=C(n,0)*c^n+C(n,2)*c^(n-2)*(is)^2+C(n,4)*c^(n-4)*(is)^4+...…+C(n,1)*c^(n-1)*(is)^1+C(n,3)*c^(n-3)*(is)^3+C(n,5)*c^(n-5)*(is)^5+...…=;比较两边的实部与虚部实部:cos(nθ)=C(n,0)*c^n+C(n,2)*c^(n-2)*(is)^2+C(n,4)*c^(n-4)*(is)^4+...…i*虚部:i*sin(nθ)=C(n,1)*c^(n-1)*(is)^1+C(n,3)*c^(n-3)*(is)^3+C(n,5)*c^(n-5)*(is)^5+...…对所有的自然数n:⒈cos(nθ):公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。⒉sin(nθ):⑴当n是奇数时:公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示。⑵当n是偶数时:公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是cosθ)的一次方无法消掉。例.c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)半角公式(正负由所在的象限决定)万能公式6辅助角公式:注:该公式又称收缩公式/强提公式/化一公式等asinα+bcosα=√(a^2+b^2)sin(α+φ),其中tanφ=b/aasinA+bcosB=根号下a方+b方×(根号下a方+b方分之a×sinA+根号下a方+b方分之b×cosB)令根号下a方+b方分之a=cosC则根号下a方+b方分之b=sinCasinA+bcosB=根号下a方+b方(sinAcosC+cosBsinC)=根号下a方+b方×sin(A+C)7三角形中的公式:正弦定理正弦定理(1):在△ABC中,a/sinA=b/sinB=c/sinC=2R其中,R为△ABC的外接圆的半径。正弦定理(2):在△ABC中,S=½a*b*sinC=½b*c*sinA=½a*c*sinB其中,S为△ABC的面积。余弦定理余弦定理:在△ABC中,a^2=b^2+c^2-2bc·cosAb^2=a^2+c^2-2ac·cosBc^2=b^2+a^2-2ab·cosC8特殊公式:(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina-sinθ)=2sin[(θ+a)/2]cos[(a-θ)/2]*2cos[(θ+a)/2]sin[(a-θ)/2]=sin(a+θ)*sin(a-θ)