15.2.2分式的加减(2)3、分式的加减2、分式的乘除bdacdcbabcadcdbadcba),()(为正整数nbabannn1、分式的乘方ababcccacadbcadbcbdbdbdbd先乘方;再乘除;最后加减;有括号先做括号内.分式的混合运算顺序:计算:(1)(2)(3)(4)31215aaa111a1aaa22xxyxxyxyxy(1)01)2(aa1)3(2aa(4)2例计算:221.4aabbabb解:22414aababbb原式2224)(4bababa)()(4)(4222babbaababa)(444222bababaa)(42babab)(42baba例计算:(1)524223mmmm;2252423mmmmm原式222923mmmm332223mmmmm23m解:(2)22214.244xxxxxxxx221242xxxxxxx原式222142xxxxxxxx2442xxxxx21.2x解:42384)1(yxxy1244)2(22xxx(1)(2)xyyxxyyx22222211111212xxxxxx计算:在本节课中我们学习了哪些知识?在解题中应用了哪些数学思想方法?你对同学有哪些温馨提示?1.知识上:学习了分式的混合运算.2.方法上:通过类比分数的混合运算的顺序,得知分式的混合运算的顺序和分数是一样的.教材习题15.2第6题.41222xxxxxx()23122122422aaaa()32431111aaaaaaa()计算:112x()1562(2)(6)aaa()131aa()22221412442aaaaaaaaa()352(2)242xxxx()22243442xxxxxxxx()2481142111aaaaaaaa()()()例1.计算:(1)解法一:aaaaaaaa42)2()1(4222解:原式aaaaaa4)2()2(4221aaaaaaaaaa244412222221aaaaaaa42142(1)解法二:aaaaaaaaa2444122222解:原式aaaaaaaaaaaa4244142222222aaaaaaaaa42441222222)1()4(2aaaa)2)(4(4aaa(2)解:原式=2)2)(2(5423xxxxx)3)(3(2)2(23xxxxx)3(21x)2(25423xxxx294232xxxxxxxxx)2)(2(2121xxxxxxxx)2)(2()2(1)2)(2()2(1xxxx22x4(3)解:原式=xxxxxxxx4244222)1)(1(4)1)(2()2(4aaaaaaaaaaaa4)1)(1()1(41a111112842aaaaaaaa))((仔细观察题目的结构特点,灵活运用运算律,适当运用计算技巧,可简化运算,提高速度,优化解题.(4)解:原式=xyxyxxyxyxx3232例2.计算:解:原式yxxyxxyxyxx)(3232yxx2yxx2yxxxx131232巧用分配律babababa11)(1)(122例3.计算:巧用公式解:原式babababababa111111baba11222baa111111aa例4.计算:解:原式)111()111(aa11aaaa11aa2200220042002200220022003222例5:你能很快计算出的值吗?