九年级数学圆的测试题和答案解析(两套)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

完美WORD格式专业知识分享圆圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。6.直径所对的圆周角是90°,90°所对的弦是直径。7.三角形的三个顶点确定1个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①dr,②d=r,③dr.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①dr,②d=r,③dr.完美WORD格式专业知识分享3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①dR-r,②d=R-r,③R-rdR+r,④d=R+r,⑤dR+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引2条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。与圆有关的计算1.圆的周长为2πr,1°的圆心角所对的弧长为180r,n°的圆心角所对的弧长为180rn,弧长公式为180rnln为圆心角的度数上为圆半径).2.圆的面积为πr2,1°的圆心角所在的扇形面积为3602r,n°的圆心角所在的扇形面积为S=360n2R=rl21(n为圆心角的度数,R为圆的半径).3.圆柱的侧面积公式:S=2rl(其中为底面圆的半径,为圆柱的高.)4.圆锥的侧面积公式:S=(其中为底面的半径,为母线的长.)圆锥的侧面积与底面积之和称为圆锥的全面积完美WORD格式专业知识分享测试题一、选择题(每小题3分,共45分)1.在△ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,以2.5cm为半径作圆,则点C和⊙A的位置关系是()。A.C在⊙A上B.C在⊙A外C.C在⊙A内D.C在⊙A位置不能确定。2.一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为()。A.16cm或6cmB.3cm或8cmC.3cmD.8cm3.AB是⊙O的弦,∠AOB=80°则弦AB所对的圆周角是()。A.40°B.140°或40°C.20°D.20°或160°4.O是△ABC的内心,∠BOC为130°,则∠A的度数为()。A.130°B.60°C.70°D.80°5.如图1,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()。A.55°B.60°C.65°D.70°6.如图2,边长为12米的正方形池塘的周围是草地,池塘边A、B、C、D处各有一棵树,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在()。A.A处B.B处C.C处D.D处图1图27.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是()。A.内含B.内切C.相交D.外切8.已知半径为R和r的两个圆相外切。则它的外公切线长为()。A.R+rB.R2+r2C.R+rD.2Rr9.已知圆锥的底面半径为3,高为4,则圆锥的侧面积为()。A.10πB.12πC.15πD.20π10.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是()。A.3B.4C.5D.611.下列语句中不正确的有()。①相等的圆心角所对的弧相等②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径都是它的对称轴④长度相等的两条弧是等弧A.3个B.2个C.1个D.4个12.先作半径为23的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,…,则按以上规律作出的第8个外切正六边形的边长为()。A.7)332(B.8)332(C.7)23(D.8)23(13.如图3,⊿ABC中,∠C=90°,BC=4,AC=3,⊙O内切于⊿ABC,则阴影部分面积为()完美WORD格式专业知识分享A.12-πB.12-2πC.14-4πD.6-π14.如图4,在△ABC中,BC=4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是()。A.4-94πB.4-98πC.8-94πD.8-98π15.如图5,圆内接四边形ABCD的BA、CD的延长线交于P,AC、BD交于E,则图中相似三角形有()。A.2对B.3对C.4对D.5对图3图4图5二、填空题(每小题3分,共30分)1.两圆相切,圆心距为9cm,已知其中一圆半径为5cm,另一圆半径为_____.2.两个同心圆,小圆的切线被大圆截得的部分为6,则两圆围成的环形面积为_________。3.边长为6的正三角形的外接圆和内切圆的周长分别为_________。4.同圆的外切正六边形与内接正六边形的面积之比为_________。5.矩形ABCD中,对角线AC=4,∠ACB=30°,以直线AB为轴旋转一周得到圆柱的表面积是_________。6.扇形的圆心角度数60°,面积6π,则扇形的周长为_________。7.圆的半径为4cm,弓形弧的度数为60°,则弓形的面积为_________。8.在半径为5cm的圆内有两条平行弦,一条弦长为6cm,另一条弦长为8cm,则两条平行弦之间的距离为_________。9.如图6,△ABC内接于⊙O,AB=AC,∠BOC=100°,MN是过B点而垂直于OB的直线,则∠ABM=________,∠CBN=________;10.如图7,在矩形ABCD中,已知AB=8cm,将矩形绕点A旋转90°,到达A′B′C′D′的位置,则在转过程中,边CD扫过的(阴影部分)面积S=_________。图6图7三、解答下列各题(第9题11分,其余每小题8分,共75分)1.如图,P是⊙O外一点,PAB、PCD分别与⊙O相交于A、B、C、D。(1)PO平分∠BPD;(2)AB=CD;(3)OE⊥CD,OF⊥AB;(4)OE=OF。从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明。ABPOEFCD完美WORD格式专业知识分享2.如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连结CB,BD是⊙O的直径,∠D=40°求:∠AO1B、∠ACB和∠CAD的度数。3.已知:如图20,在△ABC中,∠BAC=120°,AB=AC,BC=43,以A为圆心,2为半径作⊙A,试问:直线BC与⊙A的关系如何?并证明你的结论。ABC4.如图,ABCD是⊙O的内接四边形,DP∥AC,交BA的延长线于P,求证:AD·DC=PA·BC。5.如图⊿ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线。6.如图,已知扇形OACB中,∠AOB=120°,弧AB长为L=4π,⊙O′和弧AB、OA、OB分别相切于点C、D、E,求⊙O的周长。PABCDO完美WORD格式专业知识分享图③图②图①BMPPEEDDBCBCAANMPEDCA7.如图,半径为2的正三角形ABC的中心为O,过O与两个顶点画弧,求这三条弧所围成的阴影部分的面积。8.如图,ΔABC的∠C=Rt∠,BC=4,AC=3,两个外切的等圆⊙O1,⊙O2各与AB,AC,BC相切于F,H,E,G,求两圆的半径。9.如图①、②、③中,点E、D分别是正△ABC、正四边形ABCM、正五边形ABCMN中以C点为顶点的相邻两边上的点,且BE=CD,DB交AE于P点。⑴求图①中,∠APD的度数;⑵图②中,∠APD的度数为___________,图③中,∠APD的度数为___________;⑶根据前面探索,你能否将本题推广到一般的正n边形情况.若能,写出推广问题和结论;若不能,请说明理由。完美WORD格式专业知识分享参考答案一、1、C2、B3、B4、D5、C6、B7、C8、D9、C10、A11、D12、A13、D14、B15、C二、1、4cm或14cm;2、9π;3、32π,34π;4、4:3;5、)3824(π;6、12+2π;7、(38π-34)cm2;8、7cm或1cm;9、65°,50°;10、16πcm2。三、1、命题1,条件③④结论①②,命题2,条件②③结论①④.证明:命题1∵OE⊥CD,OF⊥AB,OE=OF,∴AB=CD,PO平分∠BPD。2、∠AO1B=140°,∠ACB=70°,∠CAD=130°。3、作AD⊥BC垂足为D,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵BC=43,∴BD=21BC=23.可得AD=2.又∵⊙A半径为2,∴⊙A与BC相切。4、连接BD,证△PAD∽△DCB。5、连接OD、OE,证△OEA≌△OED。6、12π。7、4π-36。【解析】解:三条弧围成的阴影部份构成三叶玫瑰,其总面积等于6个弓形的面积之和.每个弓形的半径等于△ABC外接园的半径R=(2/sin60°)/2=2√3/3.每个弓形对应的园心角θ=π/3.每个弓形的弦长b=R=2√3/3.∴一个弓形的面积S=(1/2)R^2(θ-sinθ)=(1/2)(2√3/3)^2[π/3-sin(π/3)]=(2/3)(π/3-√3/2)于是三叶玫瑰的总面积=6S=4(π/3-√3/2)=2(2π-3√3)/3.8、75。提示:将两圆圆心与已知的点连接,用面积列方程求。9、(1)∵△ABC是等边三角形∴AB=BC,∠ABE=∠BCD=60°∵BE=CD∴△ABE≌△BCD∴∠BAE=∠CBD∴∠APD=∠ABP+∠BAE=∠ABP+∠CBD=∠ABE=60°(2)90°,108°(3)能.如图,点E、D分别是正n边形ABCM…中以C点为顶点的相邻两边上的点,且BE=CD,BD与AE交于点P,则∠APD的度数为nn180)2(。

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功