21.2-二次函数的图象和性质3

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2018——2019学年度九年级数学上册集体备课教学设计六十铺中心学校(通案)课题第3课时二次函数y=a(x-h)2主备人翟俊杰辅备人李甫田李甫堂郝善强上课时间9.5课时3审核人王田祥教学分析(内容、学情分析)教学目标【知识与技能】使学生能利用描点法画出二次函数y=a(x-h)2的图象.【过程与方法】让学生经历探究二次函数y=a(x-h)2性质的过程,理解函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系,培养学生观察、分析、猜测、归纳解决问题的能力.【情感、态度与价值观】培养学生敢于实践、勇于发现、大胆探索、合作创新的精神.教学重难点【重点】会用描点法画出二次函数y=a(x-h)2的图象,理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系.【难点】理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的相互关系.教具准备三角板教学过程个性修改教学过程一、问题引入1.抛物线y=2x2+1、y=2x2-1的开口方向、对称轴和顶点坐标各是什么?2.二次函数y=-(x+1)2的图象与二次函数y=-x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二、新课教授问题1:你将用什么方法来研究问题引入2提出的问题?(画出二次函数y=-(x+1)2和二次函数y=-x2的图象,并加以观察.)问题2:你能在同一直角坐标系中画出二次函数y=-x2与y=-(x+1)2的图象吗?师生活动:教师引导学生作图,巡视、指导.学生在直角坐标系中画出图形.2018——2019学年度九年级数学上册集体备课教学设计六十铺中心学校教师对学生的作图情况作出评价,指正错误,出示正确的图形.解:(1)列表:x…-3-2-10123…y=-x2…--2-0--2-…y=-(x+1)2…-2-0--2--8…(2)描点:用表格中的各组对应值作为点的坐标,在平面直角坐标系中描点;(3)连线:用光滑的曲线顺次连接各点,得到函数y=-x2和y=-(x+1)2的图象.问题3:当函数值y取同一数值时,这两个函数的自变量之间有什么关系?反映在图象上,相应的两点之间的位置又有什么关系?师生活动:教师引导学生观察上表,当y依次取0、-、-2、-时,两个函数的自变量之间有什么关系?学生归纳得到,当函数值取同一数值时,函数y=-(x+1)2的自变量比函数y=-x2的自变量小1.教师引导学生观察函数y=-(x+1)2和函数y=-x2的图象,先研究点(-1,-)和点(0,-)、点(-1,0)和点(0,0)、点(1,-2)和点(2,-2)的位置关系.学生归纳得到:反映在图象上,函数y=-(x+1)2的图象上的点都是由函数y=-x2的图象上的相应点向左移动了一个单位.问题4:函数y=-(x+1)2和y=-x2的图象有什么联系?学生由问题3的探索,可以得到结论:函数y=-(x+1)2的图象可以看成是将函数y=-x2的图象向左平移一个单位得到的.问题5:现在你能回答前面提出的第2个问题了吗?学生观察两个函数的图象得:函数y=-(x+1)2的图象开口方向向下,对称轴是直线x=-1,顶点坐标是(-1,0);函数y=-x2的图象开口方向向下,对称轴是直线x=0,顶点坐标是(0,0).问题6:你能由函数y=-(x+1)2的图象得到函数y=-(x+1)2的一些性质吗?生:当x-1时,函数值y随x的增大而减小;当x-1时,函数值y随x的增大而增大;当x=-1时,函数取得最大值,最大值y=0.问题7:先在同一直角坐标系中画出函数y=-(x-1)2与函数y=-x2的图象,再作比较,说说它们有什么联系和区别.师生活动:教师在学生画函数图象的同时,巡视指导.学生画图并仔细观察,细心研究.教师让学生发表意见,归纳为:函数y=-(x-1)2与函数y=-x2的图象的开口方2018——2019学年度九年级数学上册集体备课教学设计六十铺中心学校向相同,对称轴、顶点坐标不同.函数y=-(x-1)2的图象可以看成是将函数y=-x2的图象向右平移一个单位得到的.问题8:你能说出函数y=-(x-1)2的图象的开口方向、对称轴和顶点坐标以及这个函数的性质吗?师生活动:教师引导学生观察y=-(x-1)2的图象,并引导学生思考其性质.学生分组讨论这个函数的性质,各组选派一名代表发言,达成共识:函数y=-(x-1)2的图象的开口向下,对称轴为直线x=1,顶点坐标是(1,0).当x1时,函数值y随x的增大而增大;当x1时,函数值y随x的增大而减小;当x=1时,函数取得最大值,最大值y=0.三、巩固练习1.在同一直角坐标系中,画出函数y=x2,y=(x+1)2,y=(x-1)2的图象.(1)填表:xy=x2y=(x+1)2y=(x-1)2…………………………(2)描点,连线:【答案】略2.观察第1题中所画的图象,并填空:(1)抛物线y=(x+1)2的开口方向是,对称轴是,顶点坐标是;抛物线y=(x+1)2是由抛物线y=x2向平移个单2018——2019学年度九年级数学上册集体备课教学设计六十铺中心学校位长度得到的;(2)对于y=(x-1)2,当x1时,函数值y随x的增大而;当x1时,函数值y随x的增大而;(3)对于函数y=x2,当x=时,函数取得最值,为;对于函数y=(x+1)2,当x=时,函数取得最值,为;对于函数y=(x-1)2,当x=时,函数取得最值,为.【答案】(1)向上x=-1(-1,0)左1(2)增大减小(3)0小0-1小01小0四、课堂小结结论如下:1.函数y=ax2(a≠0)和函数y=a(x-h)2(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿x轴向左(当h0时)或向右(当h0时)平移|h|个单位就得到y=a(x-h)2的图象.2.抛物线y=a(x-h)2(a≠0)的性质.(1)抛物线y=a(x-h)2(a≠0)的对称轴是x=h,顶点坐标是(h,0).(2)当a0时,抛物线开口向上,并向上无限伸展;当a0时,抛物线开口向下,并向下无限伸展.(3)当a0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大;当x=h时,y有最小值.当a0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小;当x=h时,y有最大值.教学反思通过本节课的学习,要求大家理解并掌握函数y=ax2(a≠0)和函数y=a(x-h)2(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿x轴向左(当h0时)或向右(当h0时)平移|h|个单位就得到y=a(x-h)2的图象;能够理解a、h对函数图象的影响,初步体会二次函数关系式与图象之间的联系,渗透数形结合的思想,为今后的学习打下良好的基础.本节课的处理是在教师的引导下,学生进行观察、归纳、总结,充分体现以学生为主、教师为辅的教学思想.这样有助于提高学生分析问题和解决问题的能力.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功