等比数列的性质1.定义2.公比(差)3.等比(差)中项4.通项公式5.性质一(若m+n=p+q)daann1q不可以是0,d可以是0等比中项abG等差中项baA211nnqaadnaan)1(1qpnmaaaaqpnmaaaamnmnqaadmnaamn)(等差数列qaann1等比数列am,am+k,am+2k,am+3k…2.等距子列仍成等比数列1.等积性若m+n=p+q,则.一、在等比数列{an}中,am.an=ap.aq3.“连续等长片段和”成等比数列Sn,S2n-Sn,S3n-S2n…特别地,当m+n=2p,有am.an=a2p4.若{an}{bn}为等比数列,则{anbn}也是等比数列。等比数列性质“连续等长片段积”成等比数列,423n23T,,nnnnnnTTTTTT,123nnTaaaa(,)mnpqN,,等比数列的例题.)()(2112111211111qqqqbaqqbababannnnnn它是一个与n无关的常数,所以nnba是一个以为公比的等比数列21qqnnnnqbqaqbqa2111121111与已知nnba,是项数相同的等比数列,nnba是等比数列.求证证明:设数列na首项为1a,公比为;1qnb首项为1b,公比为2q那么数列的第n项与第n+1项分别为:nnba111121112()()nnabqqabqq与即为24354635473810693110012100123123{}(1)0,225,___(2)512,124,,___(3)6,9,___(4)0,100,lglglg______(5)7,8,____nnnnaaaaaaaaaaaaaaqaaaaaaaaaaaaaaaaa是等比数列;若则且公比为整数则则则则(6)a1+a2=2,a3+a4=8,则a5+a6=_____.(7)an>0,a1a2a3=5,a7a8a9=10则a4a5a6=___.(2010全国卷1文)例151254100324821069,naaaaaa(1)在等比数列中,若则,.48239109,naaaaaaa(2)在等比数列中,若则.5613231081,loglog.10.20.2naaaaaaBCD3(3)在正项等比数列中,若则log的值是()A.5练习1:9±3C814=27naa(4)在等比数列中,若,则该数列前项之积为。128(7)设{an}是由正数组成的等比数列,公比q=2,且a1a2a3……a30=230,则a3a6a9……a30=(5)(2009广东理)已知等比数列满足an0,n=1,2,…,且n≥1,则当a5·a2n-5=22n(n≥3)时,log2a1+log2a3+···+log2a2n-1=()A.n(2n-1)B.(n+1)2C.n2D.(n-1)2(6)(2009浙江文)设等差数列的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列的前n项积为Tn,则T4,,,成等比数列.C1526372435462.{},2100,236.naaaaaaaaaaaaa已知正项等比数列中求数列的通项公式(8)已知等差数列}{na的公差数列0d,且931,,aaa成等比数列,则_____1042931aaaaaa1613612nna等比数列的性质补充练习1.在等比数列na,已知,51a100109aa,求18a解:∵109181aaaa205100110918aaaa2.在等比数列nb中,34b,求该数列前七项之积。解:45362717654321bbbbbbbbbbbbbb53627124bbbbbbb∴前七项之积2187333732练习1:⒈在等比数列{an}中,a2=-2,a5=54,a8=.⒉在等比数列{an}中,且an>0,a2a4+2a3a5+a4a6=36,那么a3+a5=_.⒊在等比数列{an}中,a15=10,a45=90,则a30=__________.⒋在等比数列{an}中,a1+a2=30,a3+a4=120,则a5+a6=_____.-1458630480或-30等差数列与等比数列的类比等差数列等比数列定义首项、公差(公比)取值有无限制通项公式主要性质1(2)nnaqna1(2)nnaadn11nnaaq1(1)naand(1)()nmaanmd(1)nmnmaaq(2)若m+n=s+r(m,n,s,r∈N*)则am·an=as·ar.(2)若m+n=s+r(m,n,s,r∈N*)则am+an=as+ar.1,aRdR10,0aq(3)2an=an-1+an+1.(等差中项)(3)an2=an-1·an+1.(等比中项)