1机场出租车优化问题目录1.问题的重述2.问题的分析2.1问题一的分析2.2问题二的分析2.3问题三的分析2.4问题四的分析3.模型的建立与求解4.1问题一模型的建立与求解4.2模型二模型的建立与求解4.3问题三模型的建立与求解4.4问题四模型的建立与求解5.模型的推广与改进6.模型的优缺点参考文献2[摘要]本文针对机场的出租车优化问题进行了研究,建立了基于多属性的出租车司机接客决策树模型,通过基于Python的爬虫技术,获得了交通信息数据集,经过基于大数据的程序批量预处理后,作为验证集与其他不确定属性协同验证了模型的可行性,以此推广应用到出租车司机的收益问题上。针对问题一,概括为建立出租车司机选择的决策模型。其主要思想是:首先宏观分析出租车司机决策模型的本质影响机理:收益值;然后列举出影响收益值的下一级因素:排队时间,放空时间,接客收益时间,继续向下分析出影响时间的多个属性:等车乘客数及其增量,排队车辆数,机场续车池分批效率,最高效空载距离,以及其他不确定因素。从底层属性到决策结果建立决策树模型。(如:附录一\1.问题一)。针对问题二,概括为验证模型并分析可行性和多属性因子的问题。首先基于问题一决策树模型底层影响属性,判断出影响司机决策的主观因素需要用到的验证集:该时间段航班数据集和最高效空载距离集;然后通过Python爬虫技术,获得新郑郑机场到航班的数据集和郑州出租车GPS定位的打车需求量和出租车分布的特征数据集;再通过Python进行数据集清洗预处理,得到某一时间段航班数量表和最高效空载距离,通过类比推理的思想,验证了百度地图热度图的参考价值,将百度地图热度图数据作为短距离运输最高效空载距离参考;最后通过Python进行决策树构建以及大数据运算,得出每天每个时间段的出租车司机决策结果。(如:附录一\2.问题二)针对问题三,概括为有约束条件的最优化问题。基于排队论模型确定符合题目条件的多点纵列式排队服务系统,并且确定评价该系统的评价指标便于评价系统和模型的优化程度,接着进行对系统中乘客进行相关的概率计算和分析,再结合乘客等等待时间总费用和上车点及排队服务系统的建设和服务成本,以两者之和为最小为目标函数建立优化系统的费用决策模型。求解何时可取得最优数值,得出上车点为4个时总乘车效率最高。针对问题四,对出租车短途返程“优先权”的方案设计,找到即使比排队时早接客但是由于空载原因使收益仍然低于排队的时间区间;再通过这个区间进行长途短途分类;然后结合实际情况得出优先方案。最后,本文对模型进行了误差分析,还对模型的优点和缺点进行了评价,分别在广度和深度上对模型进行了推广。[关键词]多属性决策模型;多点纵列式排队;费用决策;大数据处理;Python爬虫1、问题的重述如今出租车已经成为了一个热门行业,而飞机是很多人出行的重要工具。因此送客去机场都是很多出租车司机都会面临的工作线路,而将乘客送入机场后,出租车司机将会面临两个选择:(A)前往到达区排队等待载客返回市区。出租车必须到指定的“蓄车池”排队等候,依“先来后到”排队进场载客,等待时间长短取决于排队出租车和乘客的数量多少,需要付出一定的时间成本。(B)直接放空返回市区拉客。出租车司机会付出空载费用和可能损失潜在的载客收益。请结合实际情况,建立数学模型研究下列问题:(1)分析研究与出租车司机决策相关因素的影响机理,综合考虑机场乘客数量的变化规律和出租车司机的收益,建立出租车司机选择决策模型,并给出司机的选择策略。(2)收集国内某一机场及其所在城市出租车的相关数据,给出该机场出租车司机的选择方案,并分析模型的合理性和对相关因素的依赖性。(3)在某些时候,经常会出现出租车排队载客和乘客排队乘车的情况。某机场“乘车区”现有两条并行车道,管理部门应如何设置“上车点”,并合理安排出租车和乘客,在保证车辆和乘客安全的条件下,使得总的乘车效率最高。(4)机场的出租车载客收益与载客的行驶里程有关,乘客的目的地有远有近,出租车司机不能选择乘客和拒载,但允许出租车多次往返载客。管理部门拟对某些短途载客再次返回的出租车给予一定的“优先权”,使得这些出租车的收益尽量均衡,试给出一个可行的“优先”安排方案。32.问题的分析2.1问题一的分析分析问题一,需要找出影响出租车司机决策的因素,从机场乘客数量变化规律和司机收益两方面确定司机的选择策略。首先从司机的角度比较排队等候载客和空载返回市区拉客两种选择所需要的时间的多少。再分两种情况比较两种选择的收益:第一种情况是排队时间大于空载时间即排队司机接到乘客前,若选择空载返回的司机的净利润大于0,则最后选择空载返回;第二种情况是排队时间小于空载时间,即排队司机的成本消耗较少,则最后选择排队等待载客返回市区。该司机排队等待到接到乘客时没有油费的亏损,盈亏均为0。如果需要排队的时间很短,若是之前选择放空,因为选择排队到拉到客的时间小于选择放空之后到拉到客的时间,而排队盈亏为0,放空有油费亏损,所以比较之下选择排队亏损的比放空少,选择接客;如果排队的时间太长,而若是之前选择放空,放空的车已经接到客了,而排队情况下还在排队没有接到客,放空情况下考虑油费成本后能有盈利,而排队盈利为0,则选择接客是不理想的决策,应该选择放空;如果排队时间很长,在排队的时间内若是放空已经有拉到客了,但是拉到客的利润不能弥补之前放空的损失,即此时放空有亏损,则选择放空是不理想的决策。2.2问题二的分析分析问题二,需要搜集数据来验证问题一所建立的模型,搜集的数据是问题一建立的模型的以及对模型影响较大的变量,比如某个飞机场在单位时间段里下飞机的乘客数量,已经在排队的人数和出租车,人和出租车分批疏散效率,附近打车需求量和出租车的供应数,载客数,不确定因素,并且还需要将数据带入模型验证模型的可行性以及相关因素的发生概率。2.3问题三的分析分析问题三,现拟定机场的乘车区域有两条行车道,需要保证车辆和乘客安全的条件下设置上车点。两条行车道的上车点设置分两种情况,第一种情况是两条道路都作为可载客的停车区,第二种情况是靠近上车点的一侧作为停车区,另一侧道路不作停车区。由于第一种情况极其容易造成交通堵塞和引发安全隐患,与题目中“保证车辆与乘客的安全”不符,因此不作考虑。上车点的确立是会产生建设成本,因此本文在乘客的等待时间应该尽可能小的前提下取上车点个数的最小值,该问题为有约束条件的多目标规划问题。首先以问题一、二中搜集到的关于机场的航班和客流量数据进行处理得出单位时间内平均出站人数,再设上车点的个数为变量并用式子表示出乘客等待的总时间和上车点的建设成本(即该上车点的总费用),然后建立两者最小的目标函数,其次,乘客由于天气、夜晚时间的敏感、排队的人数过多等种种原因不选择搭乘出租车,这时需要考虑乘客搭乘出租车的概率对乘客人数的影响,引入排队系统的组成部分的概率,再结合上车点的总费用作约束条件,求出总费用最低时的上车点的个数。2.4问题四的分析分析问题四,针对短途载客再次返回的出租车司机给予一定的“优先权”是所有司机的收益相对均衡。2.4.1短途载客和长途载客的界定由于已知问题一的决策树模型第二层的时间距离收益的拐点,找到即使比排队时早接客但是由于空载原因使收4益仍然低于排队的时间或距离区间;再通过这个区间进行长途短途分类;然后结合实际情况得出优先方案。2.4.2短途载客与长途载客的比较由于出租车司机的收益与行驶路程有关,行驶路程越大,司机收益相对越多。因此,绝大多数司机希望能长途载客。短途载客的司机虽然能够在较短时间内回到机场“蓄车池”继续等候载客,但是也是因此,这类司机等待的时间往往比送客时间长,也就是说,这类司机很容易面临“排队两个小时,但是送客十五分钟”的不利局面,而这类司机的收益也不容乐观。经常能够遇到长途载客的司机就不会面临上述短途载客司机的困境,他们的收益也相对较多。2.4.3针对短途载客司机的相关策略一些地区规定:在乘客上车确认短途后,司机向管理人员报告,管理人员将记录了里程表数和车牌号的“插队条”发给司机,司机在将乘客送达目的地后,若选择继续返回机场接客,则凭借“插队条”直接进入上车点,几乎不用排队。53.模型假设与准备3.1模型的假设假设:机场蓄车池可容纳800辆,每架飞机载客147人,每辆出租车承载1.5名乘客,出租车在蓄车池内为静止状态,无任何损耗,乘坐机场出租车人数为飞机总乘客25%,出租车行驶速度均匀为40km/h,出租车百公里油耗10L。3.2模型的准备排队论模型是解决工厂车间生产问题中一种常见的数学模型。通常来说,在一个排队系统中,包含一个或多个“服务设施”,同时也存在许多需要进入服务系统的“被服务者”。当被服务者进入服务系统后却不能立即得到服务时,便会出现排队现象。多点纵列式出租车排队服务系统属于面向乘客的带有多个服务台和一个公共队伍的排队系统。乘客到达排队系统后,排在队伍前端的乘客可以根据当前上车点的出租车服务状态分散到纵向排列的多个“服务台”获得服务。出租车则由内侧车道驶入港湾式上车点搭载乘客,服务结束后驶离上车点,然后由后面的出租车依次补位。3.3符号说明:符号名称符号含义Hp航班乘客Tp搭乘出租车的乘客Pt搭乘出租车乘客的比例Tn可测前面出租车数目Wp已经在等待的乘客数Ap所有的乘客数Wt已经在等待的车辆Vt出租车车速Pg油价An航班数量Cg油耗Tw出租车等待时间C是每个乘客单位时间内的等待时间成本d是每一辆出租车等待的时间的成本m上车的人数n上车点的个数λ乘客的平均到达率μ单个上车点的平均服务率Tθ乘客等待的时间H出租车的经验函数64.模型的建立与求解4.1问题一模型的建立与求解4.1.1问题一模型的建立4.1.1.1出租车司机接客决策树模型第一层——判断结果层(R)出租车司机将会面临两种选择:a.前往到达区排队等待载客,b.返回市区直接放空返回市区拉客这两种选择相互之间是独立的,两个选项之间只能二选一,于是构成第一层决策树,判断结果R(A)或者R(B)。4.1.1.2出租车司机接客决策树模型第二层——收益值决策层基于现实实际情况,出租车司机首先会考虑自身的收益,于是我们基于出租车司机的收益情况,建立第二层决策树。即第二层决策树是模拟司机在决策时的收益预测。我们定义以时间为基准的收益为St,即收益跟时间有关。我们定义以时间为基准的收益为St,即收益跟时间有关。决策层情况如下:A.Sty=0,Stn0.该司机排队等待到接到乘客时没有油费的亏损,盈亏均为0,即Sty=0如果需要排队的时间很短,若是之前选择放空,因为选择排队到拉到客的时间小于选择放空之后到拉到客的时间,而排队盈亏为0,即Sty=0,放空有油费亏损,即Stn0所以比较之下选择排队亏损的比放空少,即StyStn,选择排队接客;B.Sty=0,StyStn.如果排队的时间太长,若是之前选择放空,放空的车已经接到客了,而排队情况下还在排队没有接到客,放空情况下考虑油费成本后能有盈利,即Stn0,而排队盈利为0,即Sty=0,即StnSty,则选择排队接客是不理想的决策,应该选择放空;C.Sty=0,StyStn.如果排队时间很长,在排队的时间内若是放空已经有拉到客了,即Sty=0,但是拉到客的利润不能弥补之前放空的损失,即此时放空有亏损Stn0,StnSty,则选择放空是不理想的决策。4.1.1.3出租车司机接客决策树模型第三层——收益影响层根据前面的叙述,导致收益决策层三种情况的因素是排队到接到客人的时间T1以及决定空载到载到人的时间T2;当T1=T2,空载到载到客人比排队早,空载存在两种情况:A.考虑空载的损耗费用后,综合收益为正;;B.考虑空载的损耗费用后,综合收益为负;当T1T2,排队到载到客人比空载早,排队存在一种情况:C.排队时没有空载的消耗,而空载没载到人一直损失.4.1.1.4出租车司机接客决策树模型第四层——时间影响层根据前面的叙述,T1和T2是收益影响因素;而仍然存在其他因素影响T1和T2。T1由两个大因素影响:车运完了人有:T1=Tn人运完了前面还有车需要等待:T1=