1直角坐标系找规律题一.选择题1.在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D-A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(-1,0)B.(1,-2)C.(1,1)D.(-1,-1)2.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)2题图3题图5题图3.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2014次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)4.如图,动点P在直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点(1,1),第二次运动到点(2,0),第三次接着运动到点(3,2),…按这样的运动规律,经过第2015次运动后,动点P的纵坐标是()A.2B.1C.0D.20155.如图,在轴的正半轴与射线上各放置着一平面镜,发光点(0,1)处沿如图所示方向发射一束光,每当碰到镜面时会反射(反射时反射角等于入射角),当光线第30次碰到镜面时的坐标为()A.(30,3)B.(88,3)C.(30,0)D.(88,0)6.如图,网格中的每个小正方形的边长都是1,A1、A2、A3、…都在格点上,△A1A2A3、△A3A4A5、△A5A6A7、…都是斜边在x轴上,且斜边长分别为2、4、6、…的等腰直角三角形.若△A1A2A3的三个顶点坐标为A1(2,0)、A2(1,-1)、A3(0,0),则依图中规律,A19的坐标为()A.(10,0)B.(-10,0)C.(2,8)D.(-8,0)6题图7题图8题图7.一个点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0),且每秒移动一个单位,那么第30秒时点所在位置的坐标是()A.(0,5)B.(5,5)C.(0,11)D.(11,11)8.如图,在平面直角坐标系中,有若干个整数点(横纵坐标都为整数的点),其顺序按图中“→”方向排列,如:(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0),(4,1),…,观察规律可得,该排列中第100个点的坐标是()A.(10,6)B.(12,8)C.(14,6)D.(14,8)9.已知A1(1,0),A2(1,-1),A3(-1,-1),A4(-1,1),A5(2,1),…,则点A2011的坐标是()A.(502,502)B.(-502,-502)C.(503,503)D.(-503,-503)29题图10题图11题图10.如图所示,在平面直角坐标系上有点A(l,O),点A第一次跳动至点A1(-1,1),第四次向右跳动5个单位后至点A4(3,2),…,依此规律跳动下去,点A第100次跳动后至点A100的坐标是()A.(50,50)B.(51,51)C.(51,50)D.(50,59)11.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第6个正方形(实线)四条边上的整点共有()A.22个B.24个C.26个D.28个12.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对为()A.(5,6)B.(3,9)C.(4,8)D.(5,7)13.将正方形ABCD的各边按如图所示延长,从射线AB开始,分别在各射线上标记点A1,A2,A3,A4,…,按此规律,则点A2014所在的射线是()A.射线ABB.射线BCC.射线CDD.射线DA13题图14题图14.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为()(用n表示).A.(2n-1,1)B.(2n+1,1)C.(2n,1)D.(4n+1,1)15.如图:有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A91的坐标是()A.(0,31)B.(31,-31)C.(-31,-31)D.(-30,-30)15题图16题图17题图16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)…根据这个规律探索可得,第100个点的坐标()A.(14,0)B.(14,-1)C.(14,1)D.(14,2)17.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的坐标为()A.(45,13)B.(1006,12)C.(45,12)D.(1006,13)二.填空题18.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为.18题图20题图3DC3-1BAOxy19.在平面直角坐标系xOy中,对于点P(x,y),我们把点P(-y+1,x+1)叫做点P′伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为.20.如图,在平面直角坐标系xOy中,A1(1,0),A2(3,0),A3(6,0),A4(10,0),…,以A1A2为对角线作第一个正方形A1C1A2B1,以A2A3为对角线作第二个正方形A2C2A3B2,以A3A4为对角线作第三个正方形A3C3A4B3,…,顶点B1,B2,B3,…都在第一象限,按照这样的规律依次进行下去,点B4的坐标为_________.平面直角坐标系动点问题1.在如图直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式+(b﹣3)2=0,(c﹣4)2≤0.(1)求a、b、c的值;(2)如果点P(m,n)在第二象限,四边形CBOP的面积为y,请你用含m,n的式子表示y;(3)如果点P在第二象限坐标轴的夹角平分线上,并且y=2S四边形CBOA,求P点的坐标.2.如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足220abb.(1)则A点的坐标为___________,C点的坐标为__________;(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=S△ODQ,若存在,请求出t的值;若不存在,请说明理由;(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,OHCACEOEC的值是否会发生变化,若不变,请求出它的值;若变化,请说明理由.xyQPDACOOCEFHGyxA3.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积ABDCS四边形4DC3-1BAOxyPDCBAOxy(2)在y轴上是否存在一点P,连接PA,PB,使PABS=ABDCS四边形,若存在这样一点,求出点P的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①DCPBOPCPO的值不变,②DCPCPOBOP的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.4.如图,A、B两点坐标分别为A(a,4),B(b,0),且a,b满足(a﹣2b+8)2+=0,E是y轴正半轴上一点.(1)求A、B两点坐标;(2)若C为y轴上一点且S△AOC=S△AOB,求C点的坐标;(3)过B作BD∥y轴,∠DBF=∠DBA,∠EOF=∠EOA,求∠F与∠A间的数量关系.5.如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB交y轴于F点.(1)求点A、B的坐标.(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图2,求∠AMD的度数.(3)如图3,(也可以利用图1)①求点F的坐标;②点P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等,求出P点坐标.