6.2.1-概率的稳定性—频率的稳定性-2019-2020学年七年级数学下册课时同步课件(北师大版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

概率的稳定性频率的稳定性一、学习目标1.通过试验理解当试验次数较大时,试验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率2.在活动中进一步发展合作交流的能力,发展辩证思维能力。3.通过对实际问题的分析,培养用数学的良好意识,激发学习兴趣,体验数学的应用价值;二、温故知新1、在一定条件下一定发生的事件,叫做;在一定条件下一定不会发生的事件,叫做;和统称为确定事件在一定条件下可能发生也可能不发生的事件,叫做,也称为。一般地,不确定事件发生的可能性是________________。2.袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是()A.1B.3C.5D.10必然事件必然事件不可能事件不可能事件不确定事件随机事件有大有小的D抛掷一枚图钉,落地后会出现两种情况:钉尖朝上,钉尖朝下。你认为钉尖朝上和钉尖朝下的可能性一样大吗?小明和小丽在玩抛图钉游戏直觉告诉我任意掷一枚图钉,钉尖朝上和钉尖朝下的可能性是不相同的。我的直觉跟你一样,但我不知道对不对。不妨让我们用试验来验证吧!活动一:做一做(1)两人一组做20次掷图钉游戏,并将数据记录在下表中:试验总次数钉尖朝上次数钉尖朝下次数钉尖朝上频率(钉尖朝上次数/试验总次数)钉尖朝下频率(钉尖朝下次数/试验总次数)频率:在n次重复试验中,不确定事件A发生了m次,则比值称为事件发生的频率。(2)累计全班同学的实验2结果,并将试验数据汇总填入下表:试验总次数n204080120160200240280320360400钉尖朝上次数m钉尖朝上频率m/n(3)根据上表完成下面的折线统计图:2040801202002401603202800.24003601.00.60.80.4钉尖朝上的频率试验总次数2040801202002401603202800.24003601.00.60.80.4钉尖朝上的频率试验总次数(4)小明共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,观察图像,钉尖朝上的频率的变化有什么规律?结论:在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性活动二:议一议(1)通过上面的试验,你认为钉尖朝上和钉尖朝下的可能性一样大吗?你是怎样想的?(2)小明和小丽一起做了1000次掷图钉的试验,其中有640次钉尖朝上。据此,他们认为钉尖朝上的可能性比钉尖朝下的可能性大。你同意他们的说法吗?人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.频率的稳定性是由瑞士数学家雅布·伯努利(1654-1705)最早阐明的,他还提出了由频率可以估计事件发生的可能性大小。频率稳定性定理数学史实1、某射击运动员在同一条件下进行射击,结果如下表:射击总次数n1020501002005001000击中靶心的次数m9164188168429861击中靶心的频率m/n(1)完成上表;(2)根据上表画出该运动员击中靶心的频率的折线统计图;(3)观察画出的折线统计图,击中靶心的频率变化有什么规律?活动三:练一练2、某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?在同样条件下,大量地对这种幼树进行移植并统计成活情况,计算成活的频率.如果随着移植棵数的越来越大,频率越来越稳定于某个常数,那么这个常数就可以被当作成活率的近似值移植总数成活数成活的频率1080.850472702350.870400369750662150013350.890350032030.915700063359000807314000126280.9020.940.9230.8830.9050.897(1)下表是统计试验中的部分数据,请补充完整:(2)由下表可以发现,幼树移植成活的频率在____左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.0.9(3)林业部门种植了该幼树1000棵,估计能成活_______棵.(4)我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_______棵.9005563.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名、2000名、3000名、4000名、5000名时分别计算了各种颜色的频率,绘制折线图如下:(1)随着调查次数的增加,红色的频率如何变化?随着调查次数的增加,红色的频率基本稳定在40%左右.(2)你能估计调查到10000名同学时,红色的频率是多少吗?估计调查到10000名同学时,红色的频率大约仍是40%左右.(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:2:1.例1在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,则口袋中红色球可能有()典例精析A.5个B.10个C.15个D.45个C例2为了看图钉落地后钉尖着地的频率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,下列说法错误的是()A.钉尖着地的频率是0.4B.随着试验次数的增加,钉尖着地的频率稳定在0.4附近C.钉尖着地的可能性小于钉尖朝上的可能性D.前20次试验结束后,钉尖着地的次数一定是8次DDnmCBA4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24B.18C.16D.6C方法一:摸到白色球的频率=1-15%-45%=40%口袋中白色球的个数=40%×40=16方法二:口袋中红色球的个数=15%×40=6口袋中黑色球的个数=45%×40=18口袋中白色球的个数=40-6-18=16人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.频率的稳定性是由瑞士数学家雅布·伯努利(1654-1705)最早阐明的,他还提出了由频率可以估计事件发生的可能性大小.频率稳定性定理数学史实练一练某射击运动员在同一条件下进行射击,结果如下表:射击总次数n1020501002005001000击中靶心的次数m9164188168429861击中靶心的频率m/n(1)完成上表;(2)根据上表画出该运动员击中靶心的频率的折线统计图;(3)观察画出的折线统计图,击中靶心的频率变化有什么规律?当堂跟踪练习1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼约尾,鲢鱼约尾.3102702.养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,鱼塘里大约有鱼多少条?解:设鱼塘里大约有鱼x条,根据题意可得10100,100x解得x=1000.答:鱼塘里大约有鱼1000条.3.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名、2000名、3000名、4000名、5000名时分别计算了各种颜色的频率,绘制折线图如下:(1)随着调查次数的增加,红色的频率如何变化?随着调查次数的增加,红色的频率基本稳定在40%左右.(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?红、黄、蓝、绿及其他颜色的生产比例大约为4:2:1:2:1.(2)你能估计调查到10000名同学时,红色的频率是多少吗?估计调查到10000名同学时,红色的频率大约是40%.4.某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?在同样条件下,大量地对这种幼树进行移植并统计成活情况,计算成活的频率.如果随着移植棵数的越来越大,频率越来越稳定于某个常数,那么这个常数就可以被当作成活率的近似值.(1)下表是统计试验中的部分数据,请补充完整;移植总数成活数成活的频率10850472702350.870400369750662150013350.890350032030.915700063359000807314000126280.902(2)由下表可以发现,幼树移植成活的频率在____左右摆动,并且随着移植棵数越来越大,这种规律愈加明显;0.9(3)林业部门种植了该幼树1000棵,估计能成活_______棵;(4)我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_______棵.900556数学理解抛一个如图所示的瓶盖,盖口向上或盖口向下的可能性是否一样大?怎样才能验证自己结论的正确性?课堂小结在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.频率:在n次重复试验中,事件A发生了m次,则比值称为事件A发生的频率.nm课堂总结:1、通过本节课的学习,你了解了哪些知识?2、在本节课的教学活动中,你获得了哪些活动体验?课堂小结:1、频率定义:2、频率变化有什么规律?当试验次数很大时,某事件发生的频率具有稳定性

1 / 40
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功