第二十四章圆第页124.1.1圆教学目标探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.教学重点圆的两种定义的探索,能够解释一些生活问题.教学难点圆的运动式定义方法课堂教学程序设计讨论完善一、创设问题情境,激发学生兴趣,引出本节内容活动1:如图1,观察下列图形,从中找出共同特点.图1学生活动设计:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.教师活动设计:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.二、问题引申,探究圆的定义,培养学生的探究精神活动2:如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件:画圆)图2学生活动设计:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.第二十四章圆第页2教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径.圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.活动3:讨论圆中相关元素的定义.如图3,你能说出弦、直径、弧、半圆的定义吗?图3学生活动设计:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.教师活动设计:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决.弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;弧:圆上任意两点间的部分叫作圆弧,简称弧;弧的表示方法:以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的ABC;劣弧:小于半圆的弧叫作劣弧,如图3中的BC.活动4:讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)学生活动设计:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.教师活动设计:讨论完善第二十四章圆第页3引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.图4讨论完善作业设计教科书P81:1—3教学反思24.1.2垂直于弦的直径教学目标探索圆的对称性,进而得到垂直于弦的直径所具有的性质;能够利用垂直于弦的直径的性质解决相关实际问题.教学重点垂直于弦的直径所具有的性质以及证明.教学难点利用垂直于弦的直径的性质解决实际问题.课堂教学程序设计讨论完善一、创设问题情境,激发学生兴趣,引出本节内容活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)学生活动设计:学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.教师活动设计:在学生归纳的过程中注意学生语言的准确性和简洁性.二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第二十四章圆第页4第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理)学生活动设计:如图2所示,连接OA、OB,得到等腰△OAB,即OA=OB.因CD⊥AB,故△OAM与△OBM都是直角三角形,又OM为公共边,所以两个直角三角形全等,则AM=BM.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,AC与BC重合.因此AM=BM,AC=BC,同理得到ADBD.教师活动设计:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.活动3:如图3,AB所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4m,弦AB=16m,求此圆的半径.图3学生活动设计:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC⊥AB,则有AD=BD,且△ADO是直角三角形,在直角三角形中可以利用勾股定理构造方程.教师活动设计:在学生解决问题的基础上引导学生进行归纳:弦长、半径、拱形高、弦心距(圆心到弦的距离)四个量中,只需要知道两个量,其余两个量就可以求出来.〔解答〕设圆的半径为R,由条件得到OD=R-4,AD=8,讨论完善第二十四章圆第页5在Rt△ADO中222AOODAD,即222(4)8RR.解得R=10(m).答:此圆的半径是10m.活动4:如图4,已知AB,请你利用尺规作图的方法作出AB的中点,说出你的作法.BA图4师生活动设计:根据基本尺规作图可以发现不能直接作出弧的中点,但是利用垂径定理只需要作出弧所对的弦的垂直平分线,垂直平分线与弧的交点就是弧的中点.〔解答〕1.连接AB;2.作AB的中垂线,交AB于点C,点C就是所求的点.小结:垂直于弦的直径的性质,圆对称性.讨论完善作业设计教科书P83:1—2教学反思24.1.3弧、弦、圆心角教学目标通过探索理解并掌握:(1)圆的旋转不变性;(2)圆心角、弧、弦之间相等关系定理;教学重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题.教学难点圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.第二十四章圆第页6课堂教学程序设计讨论完善一、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.(课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作.由已知条件可知∠AOB=∠A′O′B′;由两圆的半径相等,可以得到∠OAB=∠OBA=∠O′A′B′=∠O′B′A′;由△AOB≌△A′O′B′,可得到AB=A′B′;由旋转法可知''ABAB.在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与O′A′重合时,由于∠AOB=∠A′O′B′.这样便得到半径第二十四章圆第页7OB与O′B′重合.因为点A和点A′重合,点B和点B′重合,所以AB和''AB重合,弦AB与弦A′B′重合,即''ABAB,AB=A′B′.进一步引导学生语言归纳圆心角、弧、弦之间相等关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2.根据对上述定理的理解,你能证明下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等.师生活动设计:本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题.二、主体活动,巩固新知,进一步理解三量关系定理.活动2:如图2,在⊙O中,ABAC,∠ACB=60°,求证∠AOB=∠AOC=∠BOC.学生活动设计:图2学生独立思考,根据对三量定理的理解加以分析.由ABAC,得到ABAC,△ABC是等腰三角形,由∠ACB=60°,得到△ABC是等边三角形,AB=AC=BC,所以得到∠AOB=∠AOC=∠BOC.教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.〔证明〕∵ABAC讨论完善OABC第二十四章圆第页8∴AB=AC,△ABC是等腰三角形.又∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠AOC=∠BOC.小结:弦、圆心角、弧三量关系.讨论完善作业设计P85:练习教学反思24.1.4圆周角教学目标1.了解圆周角与圆心角的关系.2.探索圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.教学重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征.教学难点发现并论证圆周角定理.课堂教学程序设计讨论完善[活动1]演示课件或图片:教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引第二十四章圆第页9问题1如图:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(AOB和ACB)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(ADB和AEB)和同学乙的视角相同吗?导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧(AB)所对的圆心角(AOB)与圆周角(ACB)、同弧所对的圆周角(ACB、ADB、AEB等)之间的大小关系.教师引导学生进行探究.讨论完善[活动2]问题1同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?问题2同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?OBACBOACDE教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现.1.拖动圆周角的顶点使其在圆周上运动;2.改变圆心角的度数;3.改变圆的半径大小.讨论完善第二十四章圆第页10[活动3]问题1在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?(课件:折痕与圆周角的关系)问题2当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?问题3另外两种情况如何证明,可否转化成第一种情况呢?教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.教师演示圆心与圆周角的三种位置关系.教师引导学生从特殊情况入手证明所发现的结论.学生写出已知、求证,完成证明.学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.讨论完善[活动4]问题1半圆(或直径)所对的圆周角是多少度?(课件:圆周角定理推论)问题290°的圆周角所对的弦是什么?学生独立思考,回答问题,教师讲评.问题1提出后,教师关注:学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数.问题2提出后,教师关注:学生是否能由90°的圆周角推出同弧所对的圆心角度数是180°,从而得出所