课题1任意角一、教学目标(一)知识与技能目标理解任意角的概念(包括正角、负角、零角)与象限角的概念.(二)过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合(三)情感与态度目标1.提高学生的推理能力;2.培养学生应用意识.二、教学重点:任意角概念的理解;终边相同的角的集合的表示三、教学难点:终边相同角的集合的表示四、教学过程(一)引入1、回顾角的定义(在初中我们学习过角,那么请同学们回忆一下角的概念)有公共端点的两条射线组成的图形叫做角.2、讨论实际生活中出现一系列关于角的问题一只手表慢了5分钟,另外一只快了5分钟,你是怎么校准的?校准后,两种情况下分针旋转形成的角一样的吗?那么我们怎样才能准确的描述这些角呢?这就不仅需要我们知道角的形成结果,还要知道角的形成过程。(今天同学们就跟着老师一起来学习角的新知识)(二)新课讲解:1.角的有关概念:(在原来初中学习的角的概念基础上,我们重新给了角一个定义)(1)角的定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。一条射线绕着它的端点0,从起始位置OA旋转到终止位置OB,形成一个角α,点O是角的顶点,射线OA、OB是角α的始边、终边(2)角的分类:(3)注意:①为了简单起见,在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;②零角的终边与始边重合,如果α是零角α=0°;③角的概念经过推广后,已包括正角、负角和零角.(4)练习:老师举一些例子让同学说出角α、β、γ各是多少度?2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。②课堂练习,初步理解象限角在直角坐标系中,下列各角的始边与x轴的非负半轴重合,请指出它们是第几象限的角正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角始边终边顶点AOB⑴30°;⑵-120°;⑶180°;3.终边相同的角讨论:对于直角坐标系内任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系呢?(1)终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:⑴k∈Z⑵α是任一角;⑶终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷角α+k·720°与角α终边相同,但不能表示与角α终边相同的所有角.4、例题精讲例1.在0°到360°范围内,找出与-950°12'角终边相等的角,并判断它们是第几象限角.例2.写出终边在y轴上的角的集合(用0°到360°的角表示).例3.写出终边在xy上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.五、课堂小结①与角相关的概念;②象限角;③终边相同的角的表示方法;六、课后作业:①教材P5练习第1-5题;②预习弧度制七、板书设计MOP(a,b)Yx课题2任意角的三角函数一、教学目标:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.树立映射观点,正确理解三角函数是以实数为自变量的函数;二、教学重点:三角函数的定义;三、教学难点:利用与单位圆有关的有向线段,将任意角α的三角函数表示出来四、教学过程(一)复习引入在初中,我们已经学过锐角三角函数,它是在直角三角形中进行定义的,知道它们都是以锐角为自变量,以直角三角形三边的比值为函数值的函数。角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义.如图,设锐角的顶点与原点O重合,始边与x轴的正半轴重合,那么它的终边在第一象限.在的终边上任取一点(,)Pab,它与原点的距离220rab.过P作x轴的垂线,垂足为M,则线段OM的长度为a,线段MP的长度为b.则sinMPbOPr;tanMPbOMa.思考1:对于确定的角,这三个比值是否会随点P在的终边上的位置的改变而改变呢?为什么?根据相似三角形的知识,对于确定的角,三个比值不以点P在的终边上的位置的改变而改变大小.我们就可以得到一个结论,确定的角α,它的三角函数值是确定的。思考2:我们能不能用直角坐标系中的点来表示三角函数?我们可以将点P取在使线段OP的长1r的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sinMPbOP;cosOMaOP;tanMPbOMa.思考3:还有那些点可以用它的横纵坐标来表示三角函数值呢?在引进弧度制时,我们用到了半径等于单位长度的圆,在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆称为单位圆.上述P点就是的终边与单位圆的交点,锐角的三角函数可以用单位圆上点的坐标表示.(二)新课讲解1.任意角的三角函数的定义结合上述锐角的三角函数值的求法,显然,我们可以利用单位圆来定义任意角的三角函数.如图,设是一个任意角,它的终边与单位圆交于点(,)Pxy,那么:A(1,0)OP(x,y)Yx(1)y叫做的正弦(sine),记做sin,即siny;(2)x叫做的余弦(cossine),记做cos,即cosx;(3)yx叫做的正切(tangent),记做tan,即tan(0)yxx.说明:(1)当()2kkZ时,的终边在y轴上,终边上任意一点的横坐标x都等于0,所以tanyx无意义。(2)正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将这种函数统称为三角函数.2.练习利用定义求角的三角函数值例1例2.已知角的终边过点0(3,4)P,求角的正弦,余弦和正切值。思考:如果将题目中的坐标改为(-3a,-4a),题目又应该怎么做?得出规律:三角函数的值与点P在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,即可求出三角函数值。五、课堂小结任意角的三角函数六、布置作业练习1、2、3、4七、板书设计课题3同角三角函数的基本关系一、教学目标:1、掌握同角三角函数的基本关系式、变式及其推导方法;2、会运用同角三角函数的基本关系式及变式进行化简、求值及恒等式证明;3、培养学生观察发现能力,提高分析问题能力、逻辑推理能力.增强数形结合的思想、创新意识。二、教学重点:同角三角函数的基本关系式推导及其应用三、教学难点:同角三角函数的基本关系式与变式的灵活运用四、教学过程(一)引入1、什么是三角函数?正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将这种函数统称为三角函数.问题:数学中很多量之间都具有特定的联系,比如直角三角形的勾股定理。那么三角函数之间是否也具有某种关系呢?2、探究活动:30sin=?,30cos=?,30cos30sin22?45sin=?,45cos=?,45cos45sin22?3、由上情况初步得出什么结论?(二)新课讲解1.同角三角函数之间的关系三角函数是以单位圆上点的坐标来定义的,现在我们还是利用直角坐标系中的单位圆来探讨同一个角不同三角函数之间的关系。如图:以正弦线MP,余弦线OM和半径OP三者的长构成直角三角形,而且1OP.由勾股定理由221MPOM,因此221xy,即22sincos1.显然,当α的终边与坐标轴重合时,这个公式也成立。根据三角函数的定义,当()2akkZ时,有sintancos.通过上面一系列的推证,我们可以得到,同一个角的正弦、余弦的平方和OxyPM1A(1,0)等于1,商等于角的正切,这就是我们同角三角函数的基本关。2.例题讲评例6.已知3sin5,求cos,tan的值.通过例题,我们可以知道sin,cos,tan这三者知一求二,我们要熟练掌握.例7.求证:cos1sin1sincosxxxx.通过本例题,总结证明一个三角恒等式的常用方法.①我们可以从等式一边证到等式另一边,得等式右边与左边相等,或者等式左边与右边相等。②“两面夹击,中间会师”,即左右归一,将等式两边的“异”化为“同”。5.巩固练习P20页第4,5题五、学习小结(1)同角三角函数的关系式的前提是“同角”,因此1cossin22,cossintan.(2)利用平方关系时,往往要开方,我们要注意α角的取值范围,要先根据角所在象限确定符号。六、课后作业布置作业:习题1.2A组第10,13题.七、板书设计课题4正弦函数、余弦函数的图像一、教学目标1、了解用正弦线画正弦函数的图象,理解用平移法作余弦函数的图象2、掌握正弦函数、余弦函数的图象及特征3、掌握利用图象变换作图的方法,体会图象间的联系4、掌握“五点法”画正弦函数、余弦函数的简图5、通过动手作图,合作探究,体会数学知识间的内在联系6、体会数形结合的思想二、教学重点:正余弦函数图象的做法及其特征三、教学难点:正余弦函数图象的做法,及其相互间的关系四、教学过程(一)复习引入学习函数我们往往要研究它的图像与性质,前面我们已经对正弦函数、余弦函数有了一个初步的了解,那么它们的图像是什么呢?今天我们就来研究正弦函数和余弦函数的图像。我们知道物理中简谐运动的图像就是“正弦曲线”或“余弦曲线”,现在我们来看一个沙摆实验的视频,来看看图像的形状是怎样的。(二)讲授新课1、正弦函数y=sinx的图象下面我们利用正弦线来一起画一个比较精确的正弦函数图象。先建立一个直角坐标系,它的坐标原点为o,再在直角坐标系的x轴上取一点o1,以o1为圆心作单位圆,从圆o1与x轴的交点A起将圆12等分,过各等分点向x轴作垂线,分别得到等的正弦线。再把x轴从0-2π这一段等分成12等分,把这些角的正弦线平移到对应的点上,再把这些正弦线的终点用光滑的曲线连接起来,就得到的图像。P31(设计意图:通过按步骤自己画图,体会如何画正弦函数的图象,对图像理解更加透彻。)因为终边相同的角有相同的三角函数值,所以函数的图像与的图像时完全一致的。于是我们只要将的图像每次左右平移2π个单位长度就可以得到正弦函数的图像。图2、余弦函数y=cosx的图象探究:是否能够根据正弦函数图象,通过适当的图形变换得到余弦函数的图象?根据诱导公式cossin()2xx,可以把正弦函数y=sinx的图象向左平移2单位即得余弦函数y=cosx的图象.图正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.思考:利用正弦线画正弦函数的图象比较繁琐,那么我们还能够用什么更简单的方法画出图像吗?通过观察,在正弦函数0-2π的图像上,起关键作用的点有五个:(0,0)(2,1)(,0)(23,-1)(2,0)。余弦函数0-2π的图像上,起关键作用的点也有五个:(0,1)(2,0)(,-1)(23,0)(2,1)。事实上,描出这五个点后,函数的图像就基本确定了。因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图.3、例题讲解例1作下列函数的简图(1)y=1+sinx,x∈[0,2π],(2)y=-COSx【设计意图】通过两道例题检验学生对五点画图法的掌握情况,巩固画法步骤。探究1:如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=1+sinx,x∈〔0,2π〕的图象;小结:函数值加减一个常数,图像上下移动探究2:如何利用y=cosx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx,x∈〔0,2π〕的图象?小结:如果函数值互为相反数,函数的图像就是原函数关于X轴对称的图像。【设计意图】通过四个探究问题,对画图法以及正弦余弦函数及其图象的性质有更深刻的认识。五、学习小结对本节课所学内容进行小结【设计意图】在梳理本