1①一元二次不等式的定义象250xx这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式②探究一元二次不等式250xx的解集怎样求不等式(1)的解集呢?探究:(1)二次方程的根与二次函数的零点的关系容易知道:二次方程的有两个实数根:120,5xx二次函数有两个零点:120,5xx于是,我们得到:二次方程的根就是二次函数的零点。(2)观察图象,获得解集画出二次函数25yxx的图象,如图,观察函数图象,可知:当x0,或x5时,函数图象位于x轴上方,此时,y0,即250xx;当0x5时,函数图象位于x轴下方,此时,y0,即250xx;所以,不等式250xx的解集是|05xx,从而解决了本节开始时提出的问题。③探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式:220,(0)0,(0)axbxcaaxbxca或一般地,怎样确定一元二次不等式cbxax20与cbxax20的解集呢?组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线ycbxax2与x轴的相关位置的情况,也就是一元二次方程cbxax2=0的根的情况(2)抛物线ycbxax2的开口方向,也就是a的符号总结讨论结果:(l)抛物线ycbxax2(a0)与x轴的相关位置,分为三种情况,这可以由一元二次方程cbxax2=0的判别式acb42三种取值情况(Δ0,Δ=0,Δ0)来确定.因此,要分二种情况讨论(2)a0可以转化为a02分ΔO,Δ=0,Δ0三种情况,得到一元二次不等式cbxax20与cbxax20的解集一元二次不等式00022acbxaxcbxax或的解集:设相应的一元二次方程002acbxax的两根为2121xxxx且、,acb42,则不等式的解的各种情况如下表:000二次函数cbxaxy2(0a)的图象cbxaxy2cbxaxy2cbxaxy2一元二次方程的根002acbxax有两相异实根)(,2121xxxx有两相等实根abxx221无实根的解集)0(02acbxax21xxxxx或abxx2R的解集)0(02acbxax21xxxx④解一元二次不等式的步骤:①将二次项系数化为“+”:A=cbxax20(或0)(a0)②计算判别式,分析不等式的解的情况:ⅰ.0时,求根1x2x,.002121xxxAxxxA,则若;或,则若ⅱ.=0时,求根1x=2x=0x,.00000xxAxAxxA,则若;,则若的一切实数;,则若ⅲ.0时,方程无解,.00xARxA,则若;,则若③写出解集.⑤求解不等式的方法,就是将不等式转化为熟悉,可解的不等式,因此一元二次不等式的求解,也可采用以下解法。3x2+3x-40(x+4)(x-1)0或或-4x1或。原不等式解集为{x|-4x1}。x2+3x-40(x+)2|x+|-x+-4x1。原不等式解集为{x|-4x1}。⑥含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按2x项的系数a的符号分类,即0,0,0aaa;例1解不等式:0122xaax分析:本题二次项系数含有参数,044222aaa,故只需对二次项系数进行分类讨论。解:∵044222aaa解得方程0122xaax两根,24221aaaxaaax24222∴当0a时,解集为aaaxaaaxx242242|22或当0a时,不等式为012x,解集为21|xx当0a时,解集为aaaxaaax242242|224二、按判别式的符号分类,即0,0,0;例2解不等式042axx分析本题中由于2x的系数大于0,故只需考虑与根的情况。解:∵162a∴当4,4a即0时,解集为R;当4a即Δ=0时,解集为2axRxx且;当4a或4a即0,此时两根分别为21621aax,21622aax,显然21xx,∴不等式的解集为21621622aaxaaxx〈或例3解不等式Rmxxm014122解因,012m2223414)4(mm所以当3m,即0时,解集为21|xx;当33m,即0时,解集为1321322222mmxmmxx〈或;当33mm或,即0时,解集为R。5三、按方程02cbxax的根21,xx的大小来分类,即212121,,xxxxxx;例4解不等式)0(01)1(2axaax分析:此不等式可以分解为:0)1(axax,故对应的方程必有两解。本题只需讨论两根的大小即可。解:原不等式可化为:0)1(axax,令aa1,可得:1a∴当1a或10a时,aa1,故原不等式的解集为axax1|;当1a或1a时,aa1,可得其解集为;当01a或1a时,aa1,解集为axax1|。