1/6第二章:实数讲义【无理数】1.定义:2.常见无理数的几种类型:(1)(2)(3)(4)(5)3.有理数与无理数的区别:(1)(2)例:(1)下列各数:①3.141、②0.33333……、③75、④π、⑤252.、⑥32、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。(填序号)(2)有五个数:0.125125…,0.1010010001…,-,4,32其中无理数有()个【算术平方根】:1.定义:2.算术平方根具有双重非负性:3.算术平方根与平方根的关系:例:(1)下列说法正确的是()A.1的立方根是1;B.24;(C)、81的平方根是3;(D)、0没有平方根;(2)下列各式正确的是()A、981B、14.314.3C、3927D、2352/6(3)2)3(的算术平方根是。(4)若xx有意义,则1x___________。(5)已知△ABC的三边分别是,,,cba且ba,满足0)4(32ba,求c的取值范围。(6)(提高题)如果x、y分别是4-3的整数部分和小数部分。求x-y的值.平方根:1.定义:2.性质:(1)(2)(3)例(1)若x的平方根是±2,则x=;16的平方根是(2)当x时,x23-有意义。(3)一个正数的平方根分别是m和m-4,则m的值是多少?这个正数是多少?3.的性质与22)0()(aaa:(1)(2)例:1.求下列各式的值(1)27(2)27-)((3)249-)(2.已知1)12aa(,那么a的取值范围是。3.已知2<x<3,化简|3|)-22xx(。【立方根】1.定义:3/62.性质:例:(1)64的立方根是(2)若9.28,89.233aba,则b等于(3)下列说法中:①3都是27的立方根,②yy33,③64的立方根是2,④4832。其中正确的有()A、1个B、2个C、3个D、4个【估算】用估算法确定无理数的大小:注:“精确到”与“误差小于”的区别:精确到1m,是指四舍五入到个位,答案唯一;误差小于1m,答案在其值左右1m内都符合题意,答案不唯一。例:估算下列各数的大小(1))(误差小于1.0327(2))(精确到1.0327(3))(误差小于133453用估算的方法比较数的大小用估算法比较两个数的大小,一般至少有一个是无理数,且在比较大小时,一般先采用4/6分析法,估算出无理数的大致范围,再作具体比较当比较两个带根号的无理数的大小时可用如下结论:比较两个数的大小:例:比较下列两数的大小(1)2123-10与(2)5325与【实数】定义:实数的性质:实数的大小比较法则:实数的运算:实数与数轴的关系:例:(1)下列说法正确的是();A、任何有理数均可用分数形式表示;B、数轴上的点与有理数一一对应;C、1和2之间的无理数只有2;D、不带根号的数都是有理数。(2)a,b在数轴上的位置如图所示,则下列各式有意义的是()5/6A、baB、abC、baD、ab(3)比较大小(填“”或“”).310,3320,76______67,21521,(4)数7,2,3的大小关系是()A.732B.372C.273D.327(5)将下列各数:51,3,8,23,用“<”连接起来;______________________________________。(6)若2,3ba,且0ab,则:ba=。【二次根式】定义:注意:(1)(2)例:下列根式是否为二次根式(1)3-(2)||3-(3)a-(4)32二次根式的性质:性质1:性质2:最简二次根式:a0b6/6例:1.化简:(1)1512(2))0(2724bba(3)x942.计算:32278115.041323811613125.03.已知:064.01,121732yx,求代数式3245102yyxx的值。6.(提高题)观察下列等式:回答问题:①2111111112111122②6111212113121122③12111313114131122,……(1)根据上面三个等式的信息,请猜想2251411的结果;(2)请按照上式反应的规律,试写出用n表示的等式,并加以验证。