机器学习考试卷-midterm2010f-sol

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

10-701/15-781MachineLearning-MidtermExam,Fall2010AartiSinghCarnegieMellonUniversity1.Personalinfo:Name:Andrewaccount:E-mailaddress:2.Thereshouldbe15numberedpagesinthisexam(includingthiscoversheet).3.Youcanuseanymaterialyoubrought:anybook,classnotes,yourprintoutsofclassmaterialsthatareontheclasswebsite,includingannotatedslidesandrelevantreadings,andAndrewMoore'stutorials.Youcannotusematerialsbroughtbyotherstudents.Calculatorsarenotnecessary.Laptops,PDAs,phonesandInternetaccessarenotallowed.4.Ifyouneedmoreroomtoworkoutyouranswertoaquestion,usethebackofthepageandclearlymarkonthefrontofthepageifwearetolookatwhat'sontheback.5.Workeciently.Somequestionsareeasier,somemoredicult.Besuretogiveyourselftimetoansweralloftheeasyones,andavoidgettingboggeddowninthemoredicultonesbeforeyouhaveansweredtheeasierones.6.Youhave90minutes.7.Goodluck!QuestionTopicMax.scoreScore1Shortquestions202BayesOptimalClassi cation153LogisticRegression184Regression165SVM166Boosting15Total10011ShortQuestions[20pts]ArethefollowingstatementsTrue/False?Explainyourreasoninginonly1sentence.1.Densityestimation(usingsay,thekerneldensityestimator)canbeusedtoperformclassi cation.True:EstimatethejointdensityP(Y;X),thenuseittocalculateP(YjX).2.ThecorrespondencebetweenlogisticregressionandGaussianNaveBayes(withiden-tityclasscovariances)meansthatthereisaone-to-onecorrespondencebetweentheparametersofthetwoclassi ers.False:EachLRmodelparametercorrespondstoawholesetofpossibleGNBclassifierparameters,thereisnoone-to-onecorrespondencebecauselogisticregressionisdiscrimi-nativeandthereforedoesn’tmodelP(X),whileGNBdoesmodelP(X).3.Thetrainingerrorof1-NNclassi eris0.True:Eachpointisitsownneighbor,so1-NNclassifierachievesperfectclassificationontrainingdata.4.Asthenumberofdatapointsgrowstoin nity,theMAPestimateapproachestheMLEestimateforallpossiblepriors.Inotherwords,givenenoughdata,thechoiceofpriorisirrelevant.False:Asimplecounterexampleisthepriorwhichassignsprobability1toasinglechoiceofparameter.5.Crossvalidationcanbeusedtoselectthenumberofiterationsinboosting;thispro-ceduremayhelpreduceover tting.True:Thenumberofiterationsinboostingcontrolsthecomplexityofthemodel,therefore,amodelselectionprocedurelikecrossvalidationcanbeusedtoselecttheappropriatemodelcomplexityandreducethepossibilityofoverfitting.6.ThekerneldensityestimatorisequivalenttoperformingkernelregressionwiththevalueYi=1nateachpointXiintheoriginaldataset.False:Kernelregressionpredictsthevalueofapointastheweightedaverageofthevaluesatnearbypoints,thereforeifallofthepointshavethesamevalue,thenkernelregressionwillpredictaconstant(inthiscase,1n)forallvalues.7.Welearnaclassi erfbyboostingweaklearnersh.Thefunctionalformoff'sdecisionboundaryisthesameash's,butwithdi erentparameters.(e.g.,ifhwasalinearclassi er,thenfisalsoalinearclassi er).False:Forexample,thefunctionalformofadecisionstumpisasingleaxis-alignedsplitoftheinputspace,butthefunctionalformoftheboostedclassifierislinearcombinationsofdecisionstumpswhichcanformamorecomplex(piecewiselinear)decisionboundary.28.Thedepthofalearneddecisiontreecanbelargerthanthenumberoftrainingexamplesusedtocreatethetree.False:Eachsplitofthetreemustcorrespondtoatleastonetrainingexample,therefore,iftherearentrainingexamples,apathinthetreecanhavelengthatmostn.Note:Thereisapathologicalsituationinwhichthedepthofalearneddecisiontreecanbelargerthannumberoftrainingexamplesn-ifthenumberoffeaturesislargerthannandthereexisttrainingexampleswhichhavesamefeaturevaluesbutdifferentlabels.Pointshavebeengivenifyouansweredtrueandprovidedthisexplanation.Forthefollowingproblems,circlethecorrectanswers:1.Considerthefollowingdataset:Circlealloftheclassi ersthatwillachievezerotrainingerroronthisdataset.(Youmaycirclemorethanone.)(a)Logisticregression(b)SVM(quadratickernel)(c)Depth-2ID3decisiontrees(d)3-NNclassi erSolution:SVM(quadkernel)andDepth-2ID3decisiontrees32.Forthefollowingdataset,circletheclassi erwhichhaslargerLeave-One-OutCross-validationerror.a)1-NNb)3-NNSolution:1-NNsince1-NNCVerr:5/10,3-NNCVerr:1/1042BayesOptimalClassi cation[15pts]Inclassi cation,thelossfunctionweusuallywanttominimizeisthe0/1loss:`(f(x);y)=1ff(x)6=ygwheref(x);y2f0;1g(i.e.,binaryclassi cation).Inthisproblemwewillconsiderthee ectofusinganasymmetriclossfunction:` ; (f(x);y)= 1ff(x)=1;y=0g+ 1ff(x)=0;y=1gUnderthislossfunction,thetwotypesoferrorsreceivedi erentweights,determinedby ; 0.1.[4pts]DeterminetheBayesoptimalclassi er,i.e.theclassi erthatachievesminimumriskassumingP(x;y)isknown,fortheloss` ; where ; 0.Solution:WecanwriteargminfE` ; (f(x);y)=argminfEX;Y[ 1ff(X)=1;Y=0g+ 1ff(X)=0;Y=1g]=argminfEX[EYjX[ 1ff(X)=1;Y=0g+ 1ff(X)=0;Y=1g]]=argminfEX[Zy 1ff(X)=1;y=0g+ 1ff(X)=0;y=1gdP(yjx)]=argminfZx[ 1ff(x)=1gP(y=0jx)+ 1ff(x)=0gP(y=1jx)]dP(x)Wemayminimizetheintegrandateachxbytaking:f(x)=(1 P(y=1jx) P(y=0jx)0 P(y=0jx) P(y=1jx):2.[3pts]Supposethattheclassy=0isextremelyuncommon(i.e.,P(y=0)issmall).Thismeansthattheclassi erf(x)=1forallxwillhavegoodrisk.Wemaytrytoputthetwoclassesonevenfootingbyconsideringtherisk:R=P(f(x)=1jy=0)+P(f(x

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功