机器学习-试卷-finalf15

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

CS189Fall2015IntroductiontoMachineLearningFinal•Pleasedonotturnoverthepagebeforeyouareinstructedtodoso.•Youhave2hoursand50minutes.•Pleasewriteyourinitialsonthetop-rightofeachodd-numberedpage(e.g.,write\AEifyouareAlexeiEfros).Completethisbytheendofyour2hoursand50minutes.•Theexamisclosedbook,closednotesexceptyourone-pagecheatsheet.•Nocalculatorsorotherelectronicdevicesallowed.•MarkyouranswersONTHEEXAMITSELFINTHESPACEPROVIDED.Ifyouarenotsureofyouransweryoumaywishtoprovideabriefexplanation.DoNOTattachanyextrasheets.•Thetotalnumberofpointsis150.Thereare15true/falsequestionsworth2pointseach,10multiplechoicequestionsworth3pointseach,and6descriptivequestionswithunequalpointassignments.•Fortrue/falsequestions, llintheTrue/Falsebubble.•Formultiple-choicequestions, llinthebubblesforALLCORRECTCHOICES:Theremaybemorethanonecorrectchoice,buttherewillbeatleastonecorrectchoice.NOPARTIALCREDIT:thesetofallcorrectanswersmustbechecked.FirstnameLastnameSIDFirstandlastnameofstudenttoyourleftFirstandlastnameofstudenttoyourright1Q1.[30pts]TrueorFalse(1)[2pts]RandomforestsusuallyperformbetterthanAdaBoostwhenyourdatasethasmislabeleddatapoints.TrueFalse(2)[2pts]Thediscriminantfunctioncomputedbykernelmethodsarealinearfunctionofitsparameters,notnecessarilyalinearfunctionoftheinputs.TrueFalse(3)[2pts]TheXORoperatorcanbemodeledusinganeuralnetworkwithasinglehiddenlayer(i.e.3-layernetwork).TrueFalse(4)[2pts]Convolutionalneuralnetworksarerotationinvariant.TrueFalse(5)[2pts]Makingadecisiontreedeeperwillassurebetter tbutreducerobustness.TrueFalse(6)[2pts]Baggingmakesuseofthebootstrapmethod.TrueFalse(7)[2pts]K-meansautomaticallyadjuststhenumberofclusters.TrueFalse(8)[2pts]Dimensionalityreductioncanbeusedaspre-processingformachinelearningalgorithmslikedecisiontrees,kd-trees,neuralnetworksetc.TrueFalse(9)[2pts]K-dtreesguaranteeanexponentialreductioninthetimeittakesto ndthenearestneighborofanexampleascomparedtothenaivemethodofcomparingthedistancestoeveryotherexample.TrueFalse(10)[2pts]Logisticregressionisequivalenttoaneuralnetworkwithouthiddenunitsandusingcross-entropyloss.TrueFalse(11)[2pts]Convolutionalneuralnetworksgenerallyhavefewerfreeparametersascomparedtofullyconnectedneuralnetworks.TrueFalse(12)[2pts]K-medoidsisakindofagglomerativeclustering.TrueFalse(13)[2pts]Whiteningthedatadoesn'tchangethe rstprincipaldirection.TrueFalse(14)[2pts]PCAcanbekernelized.TrueFalse(15)[2pts]PerformingK-nearestneighborswithK=Nyieldsmorecomplexdecisionboundariesthan1-nearestneighbor.TrueFalse2Q2.[30pts]MultipleChoice(1)[3pts]Whichofthefollowingguidelinesisapplicabletoinitializationoftheweightvectorinafullyconnectedneuralnetwork.Shouldnotsetittozerosinceotherwiseitwillcauseover ttingShouldnotsetittozerosinceotherwise(stochastic)gradientdescentwillexploreaverysmallspaceShouldsetittozerosinceotherwiseitcausesabiasShouldsetittozeroinordertopreservesym-metryacrossallneurons(2)[3pts]DuplicatingafeatureinlinearregressionCanreducetheL2-PenalizedResidualSumofSquares.DoesnotreducetheResidualSumofSquares(RSS).CanreducetheL1-PenalizedResidualSumofSquares(RSS).Noneoftheabove(3)[3pts]Whichofthefollowingis/areformsofregularizationinneuralnetworks.WeightdecayL2regularizationL1regularizationDropout(4)[3pts]Wearegivenaclassi erthatcomputesprobabilitiesfortwoclasses(positiveandnegative).ThefollowingisalwaystrueabouttheROCcurve,andtheareaundertheROCcurve(AUC):AnAUCof0.5representsaclassi erthatperformsworsethanrandom.WegenerateanROCcurvebyvaryingthediscriminativethresholdofourclassi er.TheROCcurveallowsustovisualizethetradeo betweentruepositiveandfalsepositiveclassi cations.TheROCcurvemonotonicallyincreases.(5)[3pts]TheK-meansalgorithm:RequiresthedimensionofthefeaturespacetobenobiggerthanthenumberofsamplesHasthesmallestvalueoftheobjectivefunc-tionwhenK=1MinimizesthewithinclassvarianceforagivennumberofclustersConvergestotheglobaloptimumifandonlyiftheinitialmeansarechosenassomeofthesam-plesthemselvesNoneoftheabove(6)[3pts]Supposewhenyouaretrainingyourconvolutionalneuralnetwork,you ndthatthetraininglossjustdoesn'tgodownafterinitialization.Whatcouldyoutryto xthisproblem?ChangethenetworkarchitectureChangelearningratesEnsuretrainingdataisbeingreadcorrectlyFindabettermodelNormalizetheinputstothenetworkAddaregularizationterm3(7)[3pts]Logisticregression:Minimizescross-entropylossHasasimple,closedformanalyticalsolutionModelsthelog-oddsasalinearfunctionIsaclassi cationmethodtoestimateclassposteriorprobabilities(8)[3pts]Selectallthetruestatements.The rstprincipalcomponentisuniqueuptoasignchange.Thelastprincipalcomponentisuniqueuptoasignchange.Allprincipalcomponentsareuniqueuptoasignchange.Ifsomefeaturesarelinearlydependent,atleastonesingularvalueiszero.Ifsomefeaturesarecorrelated,atleastonesingularvalueiszero.(9)[3pts]Selectallthechoicesthatmakethefollowingstatementtrue:In(a),thetrainingerrordoesnotincreaseas(b)increases.a:K-means,b:numberofiterationsa:Trainingneuralnetswithbackpropagationusingbatchgradientdecent,b:numberofiterationsa:Trainingneuralnetswithbackpropagationusingstochasticgradient

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功