第九章施工测量的基本工作§9-1概述§9-2测设的基本工作§9-3点的平面位置测设方法§9-4已知坡度直线的测设§9-5曲线的测设§9-6路基边桩放样一、施工测量的主要内容1、施工测量在施工阶段进行的测量工作。2、主要任务将图纸上设计建筑物的平面位置和高程,按设计与施工要求,以一定的精度标定到实地,作为施工的依据.并在施工过程中进行一系列的测量工作.3、主要内容:(1)建立施工控制网;(2)依据设计图纸要求进行建(构)筑物的放样;(3)每道施工工序完成后,通过测量检查各部位的平面位置和高程是否符合设计要求;(4)随着施工的进展,对一些大型、高层或特殊建(构)物进行变形观测。二、施工测量的特点与要求1.施工测量虽与地形测量相反,但它同样遵循“从整体到局部,先控制后细部”的原则;2.施工测量精度取决于建筑物的用途、大小、性质、材料、结构形式和施工方法;3.施工测量是工程建设的一部分,必须做好一系列准备工作;4.施工测量的质量将直接影响工程建设的质量,故施工测量应建立健全检查制度;5.施工现场交通频繁,地面震动大;各种测量标志应埋设稳固,一旦被毁,应及时恢复。6.施工现场工种多,交叉作业,干扰大,易发生差错和安全事故.返回一、测设已知水平距离从地面上一个已知点开始,沿已知方向,量出给定的水平距离,定出该段距离的另一端的工作(一)钢尺测设法1.一般测设方法已知水平距离已知点已知方向基本工作:距离测设高程测设角度测设步骤:1)利用一般方法,测设出已知水平距离D,定出终点;2)利用水准仪测得起终点之间的高差;3)利用下式计算出实地应测设的距离;L=D-(ΔLd+ΔLt+ΔLh)ΔLd:尺长改正数ΔLt:温度改正数ΔLh:高差改正数4)利用经纬仪定向,使用检定过的钢尺,根据计算出L,实地标定出已知水平距离D.2.精确测设方法(二)光电测距仪测设法DD'LαACC'1、一般放样方法二、角度放样(正倒镜分中法)在A安置经纬仪;盘左瞄准B,水平度盘读数b;转动照准部至读数(b+),定C′;盘右瞄准B,水平度盘读数b1;转动照准部至读数(b1+),定C″;取C′、C″之中间位置得C,则:BAC=二、角度放样2、精确放样方法(多测回修正法)用“正倒镜分中法”放样角;多测回观测BAC1,取平均得1;计算改正值C1C,修正得精确位置C。例:已知AC1=85.00米,设计值=36°,设测得1=35°59′42″,计算修正值C1C。解:=-1=18″C1C=85×18″/ρ″=0.0074m=7.4mm得:点位修正值为7.4mm(向外)SCC1ab应ABhHAHiH设大地水准面三、测设已知高程1、地面上点的高程测设A为已知水准点,高程为HA;B点的设计高程为H设,则:水准仪视线高:Hi=HA+aB点尺上的应读数为:b应=Hi-H设ABab应ABhHAHiH设大地水准面A例:已知水准点A的高程HA=24.376m,要放样某设计地坪标高HB=25.000m。测放样过程如下:在A、B间安置水准仪,在A竖水准尺,在B处设木桩;对水准尺A读数,设为a=1.534m,则:水平视线高Hi=HA+a=24.376+1.534=25.910mB点应读数b=Hi-HB=25.910-25.000=0.910m调整B尺高度,至读数b=0.910时,沿尺底做标记即设计标高HB。2、高程传递B点水准尺上的应读数:d=HA+a-(b-c)-H设bcadABMB水准仪的前视读数应为:b=HB-(HA+a)HBBbaAHA大地水准面当待放样的高程HB高于仪器视线时(如放样地铁隧道管顶标高时),可以把尺底向上,即用“倒尺”法放样。倒尺法b=HB-(HA+a)AaHA3、测设水平面视线高:Hi=HA+a各木桩顶尺上的读数均为:b应=Hi-H设DiiP1P2P3P4P5P6AB已知坡度直线的测设:实际上是每隔一定距离测设一个符合设计高程的位置桩,使之构成已知坡度。如下图:已知A点高程为HA,设计坡度为i'(上坡为正,下坡为负),则B点的高程为:HB=HA+i'•DABDiiP1P2P3P4P5P6AB测设步骤:1、先根据附近水准点,将设计坡度线的两端A、B的设计高程HA,HB测设于地面上,并打入木桩;适用范围:道路、管道、地下工程、场地平整等工程施工中。所用仪器:水准仪(或经纬仪)2、将水准仪置于A并量仪器高i,安置时使一个脚螺旋在AB方向上,另两个脚螺旋的连线大致垂直于AB方向线;3、瞄准B点上的水准尺,调节脚螺旋,使视线在B标尺上的读数等于仪器高i,此时水准仪的倾斜视线与设计坡度线平行;4、在AB之间按一定的间距打桩,当各桩点上水准尺读数都为仪器高i时,则各桩顶连线就是所需测设的设计坡度。DiiP1P2P3P4P5P6AB各桩处填挖高度的确定:若各桩顶的标尺实际读数为bi,则该桩处的填挖高度为:填挖高度=i-bii=b,不挖不填;ib,挖;ib,填。一、直角坐标法XyABO1234ab9.3平面位置放样的方法直角坐标法极坐标法角度交会距离交会ΔxΔyABX=700.000mY=600.000mX=900.000mY=600.000m建筑基线◆现场有控制基线,且待放样的轴线与基线平行。待建房屋①②ABX=832.000mY=698.000mX=760.000mY=650.000mΔyΔxC1、计算放样数据;2、实地放样点位1)A点安置仪器,后视B,按距离放样方法放样Δx得C点;2)C点安置仪器,后视A并置零,盘左盘右取中法拨角90°后,放样距离Δy定出房角点;3)同理,放样出其余的房角点;4)检查各房角之间的距离是否与设计相符。一般规定:相对误差不应超1/2000~1/5000,在高层和工业厂房放样中精度要求更高。二、极坐标法1、计算放样数据:A、B为已知点,计算β、dAP。B(XB,YB)A(XA,YA)P(XP,YP)β2、实地放样:A点安置仪器,瞄准B点,水平度盘归零;逆时针转动β角,在此方向上量距dAP,即定出P点。ABABABXXYYarctgPAAPPAYYarctgXXAPAB22)()(APAPAPYYXXd极坐标测设算例例:右图中J、K为已知导线点,P为某设计点位。按图中数据计算在J点用极坐标法测设P点的放样数据、D。KJPXK=746.202mYK=456.588mXJ=502.110mYJ=496.225mXP=450.000mYP=560.000mD解:XJP=XP-XJ=-52.110YJP=YP-YJ=+63.775XJK=XK-XJ=+244.092YJK=YK-YJ=-39.63732'2813835'4635007'1512907'1512953'4450180110.52775.6335'4635025'139360092.244637.39357.82775.63110.521122JKJpJpJKtgtgmD1.计算AB、AP、BP则:α=AB-AP=BP-BA2.在测站A放样角α,得AP方向;在测站B放样角,得BP方向,相交得P点,定P点标志。测设时,通常先沿AP、BP的方向线打“骑马桩”,然后交出P点位置。注意交会角:30°120°三、角度交会法γ三、角度交会法适用于待放样点距控制点较远或不便量距的情况。ABCPα1αAPαABν1α2ν2β1β2abcppp注意示误三角形的处理重心桥轴线垂足点四、距离交会法所需放样数据:两段或两段以上已知距离。ABCd11243d2d3d4该法适用于施工场地平坦,量距方便且控制点距待放样点不超过一尺段的情况。(一)圆曲线的主点测设(ZY、QZ、YZ)αQZYZRTZYOαJDE0L9.5圆曲线测设T图51圆曲线主点及要素αQZYZZYLJDαOE0R—圆曲线半径(设计选配)—转向角(现场实测)LTq24、切曲差:R(二)圆曲线的要素计算2tanRT1、切线长:180RL2、曲线长:)12(sec0RE3、外矢距:ZY1YZ2JD1JD2YZ1ZY2ZD图52主点里程推算推算方向是:ZDZY1QZ1YZ1ZY2QZ2YZ2。(三)曲线主点里程推算已知铁路线路转点ZD的里程为K125+032.58,其它已知数据如表所示,试推算各主点的里程。曲线资料点号圆曲线半径R(m)转向角(°′″)水平距离D(m)ZD1032.75JD1500321543(Y)724.86JD2500253016(Z)点号切线长T(m)曲线长L(m)外矢距E0(m)切曲差q(m)JD1144.61281.5420.497.68JD2113.16222.5712.653.75曲线要素计算表ZY1YZ2JD1JD2YZ1ZY2ZD图52主点里程推算里程推算:ZDDK125+032.58+(D1-T1)888.14ZY1DK125+920.72+L1/2140.77QZ1DKI26+061.49+L1/2140.77YZ1DK126+202.26+(D2-T1-T2)467.09ZY2DK126+669.35+L2/2111.28QZ2DK126+780.63+L2/2111.29YZ2DK126+891.92检核计算:ZY1DK125+920.72+2T1289.22DK126+209.94-q7.68YZ1DK126+202.26ZY2DK126+669.35+2T2226.32DK126+895.67-q3.75YZ2DK126+891.92AZYJD1LQZYZJD2ROETTαα④测设出内角平分线(180°-α)/2,自JD于内角平分上测设外矢距E0,则可钉出QZ。(四)圆曲线主点测设①在JD上安置经纬仪,对中、整平。②后视始端切线方向上的相邻交点或转点,自JD于视线方向上量距T,可钉设出ZY点。③后视另一切线方向上的相邻交点或转点,自JD于视线方向量距T,可钉设出YZ点。偏角:弦切角δP,1、δP,2、δP,3、…弦长:c1、c2、c3…偏角法实质:角度与距离的交会法。关键:偏角计算,测站点仪器定向(1)偏角法δ1δ1δ2123pccc(五)圆曲线详细测设1802,,Rljijiδi,j—过i点的切线与i、j两点弦线之偏角li,j—i、j两点间的曲线长R—圆曲线半径偏角计算jiδi,jR弧弦差:圆弧与相应的弦长之差。半径(m)4000300020001000800700600500300200弧弦差(mm)0.020.040.080.330.520.680.931.333.708.33弧弦差对比表2324Rlc圆曲线半径越大,其弧弦差越小。因此,当圆曲线半径较大时,且相邻两点间的距离不超过20m时,可用弧长代替相应的弦长,其代替误差远小于测设误差。弦线长度δ1δ1δ2123pccc放样方法注意:百米桩的测设JD若切线方向的水平度盘读数为0°00′00″正拨:平盘读数=偏角值反拨:平盘读数=360°-偏角值。正拨与反拨PPc1c2δp,11δp,22δp,3c33正拨反拨OlllαJDQZRp1p2p3φφφ(2)切线支距法切线支距法即直角坐标法。①坐标系的建立原点:起点、终点X轴:切线Y轴:过原点的半径式中:li:细部点Pi至原点的弧长;φi:li对应的圆心角;R:曲线半径②切线支距法细部测设数据的计算)cos1(sin1800iiiiiiRyRxRlOlllαJDQZRp1p2p3φφφa.在ZY点安置仪器,瞄准JD,沿其视线方向丈量横坐标值xi,得各垂足Ni;b.在Ni点用方向架或经纬仪定出直角方向,沿其方向丈量纵坐标值yi,即得曲线上各点,直至曲中点QZ;③细部点测设方法④切线支距法的适用范围及特点该法适用于地势平坦地区,具有桩位误差不累积、施测方法简单等优点。c.对于另一半曲线,按同样方法由YZ点进行测设;d.