中等职业数学课件-1-2-1-一元一次不等式(组)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一元一次不等式(组)生活中的数学与实数有关的生活某位同学准备读一本120页的书,计划10天内读完,前5天因种种原因每天只看10页,问后5天平均每天至少要看多少页才能看完呢?解:后5天平均每天至少要看x页。5120510x570x14x所以后5天平均每天至少要看14页。生活中的数学分析与归纳请同学们归纳该式的特点2、含有一个未知数;3、未知数的次数为1;1、含有不等号();,,,,一一元一次不等式一元一次不等式含义只含有一个未知数,未知数的次数是一次的不等式;1132).1(xx如:.21352).2(xx一元一次不等式例题例1解下列不等式,并画出解集的数轴表示321243xx解:3(32)4(1)24xx964424xx944246xx514x145x所以,不等式的解集为14(,]5-610-1-2-4-5-32x一元一次不等式解法归纳解一元一次不等式一般步骤321243xx3(32)4(1)24xx964424xx944246xx514x145x去分母(乘以分母最小公倍数)去括号移项合并同类项系数化为1一元一次不等式巩固练习解下列不等式,并用区间表示解集751553xx解:21755(51)xx2175255xx2125575xx480x20x所以不等式的解集为(,20)一元一次不等式练习完成课本第13页知识巩固1解下列不等式,并画出解集的数轴表示1743xx解:(1)21121xx21112xx2013x1320x-43210-2-3-14x42125xx(2)5(4)2(21)xx52042xx54220xx22x-152015105-5-10025x二一元一次不等式组一元一次不等式组含义只含有相同的一个未知数的几个一元一次不等式组成的不等式组。如:.148,112).1(xxxx2311,(2).2512.3xxxx一元一次不等式组定义判断判断下列式子是一元一次不等式组吗?;42,5,03).1(xxx;2,2).2(yx.4,014).3(2xx是特点:一元、一次、多个归纳:一元一次不等式组有何特点?一元一次不等式组例题讲解•例2.解下列不等式组:23(1)2,(1).5.2xxxx解:解不等式①,得①②1x5x在同一个数轴上表示不等式①,②的解集为解不等式②,得所以原不等式组的解集为{|15}xx-24206-1135x7一元一次不等式组例题讲解•例2.解下列不等式组:163132,(2).5362.xxxx解:解不等式①,得①②3x1x在同一个数轴上表示不等式①,②的解集为解不等式②,得所以原不等式组的解集为-420-24-3-113x5一元一次不等式组解法归纳解一元一次不等式组一般步骤1、利用一元一次不等式解法分别求解各不等式的解集(去分母、去括号、移项、合并同类项、系数化为1)23(1)2,5.2xxxx解:解不等式①,得①②1x5x解不等式②,得2、求各不等式的解集的共同部分,即不等式组的解集所以原不等式组的解集为{|15}xx(可用画数轴求解法,也可用口诀求解法)一元一次不等式组求解口诀.7,3)1(xx解:原不等式组的解为x7;.3,2)2(xx解:原不等式组的解为x2;0765421389-43210-2-3-145解:原不等式组的解为xa。ab大大取较大xaxbab一元一次不等式组求解口诀解:原不等式组的解为x≤3;解:原不等式组的解为x≤-5;0765421389-70-1-2-3-5-6-412.7,3)5(xx(3).5,2)6(xx(4)xaxbab解:原不等式组的解为xb。ab小小取较小一元一次不等式组求解口诀大小小大中间找xaxbab解:原不等式组的解为3x7;0765421389(5).7,3)9(xx(6).4,1)11(xx解:原不等式组的解为-1≤x4;-34321-1-2056ab解:原不等式组的解为bxa。一元一次不等式组求解口诀大大小小解不了xaxbab(7)(8)解:原不等式组无解;0765421389.7,3)13(xx.4,1)15(xx-34321-1-2056解:原不等式组无解;ab解:原不等式组无解;一元一次不等式组求解口诀总结大大取较大xaxaxb小小取较小xaxbxb大小小大中间找xabxaxb大大小小解不了xaxb一元一次不等式组练习完成课本第16页知识巩固2求下列不等式组的解集11,2(1).5.23xxxx解:解不等式①,得①②3x15x解不等式②,得所以原不等式组的解集为{|153}xx大小小大中间找一元一次不等式组练习完成课本第16页知识巩固2求下列不等式组的解集①②23(1)2,(2).7(3)5(2)3.xxxxx解:解不等式①,得1x31x解不等式②,得所以原不等式组的解集为{|1}xx小小取较小三集合之间的运算集合之间的运算求不等式解集的拓展-交集含义1.交集用Venn图表示为:定义:由两个集合A、B的公共部分组成的集合,叫这两个集合的交集,记作A∩B=C={x|x∈A且x∈B},读作A交B.AB1.交集例A={2,4,6,8,10},B={3,5,8,12},C={6,8},求①A∩B②A∩(B∩C);解①A∩B={8},②A∩(B∩C)={2,4,6,8,10}∩{8}={8}集合之间的运算求不等式解集的拓展-交集例题1.交集例设集合A={x|-1<x<2},集合B={x|1<x<3},求A∩B.A∩B={x|1<x<2}.x-1123解:集合之间的运算求不等式解集的拓展-交集例题2.并集定义:由所有属于集合A或B的元素组成的集合,称为集合A与集合B的并集,记作A∪B,即A∪B={x|x∈A或x∈B}.AB用Venn图表示为:集合之间的运算并集含义2.并集例设集合A={4,5,6,8},集合B={3,5,7,8,9},求A∪B.A∪B={3,4,5,6,7,8,9}.解:集合之间的运算并集例题2.并集例设集合A={x|-1<x<2},集合B={x|1<x<3},求A∪B.A∪B={x|-1<x<3}.x-1123解:集合之间的运算并集例题小结*1.一元一次不等式含义与解法2.一元一次不等式组含义与解法3.集合的运算作业*完成习题册第5-6页的A组第1-9题谢谢观赏

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功