【精品】精讲历届高考统计、统计案例

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

注:未经本文作者同意,请勿私自转载!统计、统计案例2013年考题1.(2013福建高考)已知某运动员每次投篮命中的概率都为40%。现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35B0.25C0.20D0.15【解析】选B.由随机数可估算出每次投篮命中的概率242605p则三次投篮命中两次为223(1)CPP0.25故选B.2.(2013福建高考)一个容量100的样本,其数据的分组与各组的频数如下表组别(0,10](10,20](20,30](30,40](40,50](50,60](60,70]频数1213241516137则样本数据落在(10,40]上的频率为()A.0.13B.0.39C.0.52D.0.64【解析】选C.由题意可知频数在10,40的有:13+24+15=52,由频率=频数总数可得0.52.3.(2013海南宁夏高考)对变量x,y有观测数据(ix,iy)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(iu,iv)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()(A)变量x与y正相关,u与v正相关(B)变量x与y正相关,u与v负相关(C)变量x与y负相关,u与v正相关(D)变量x与y负相关,u与v负相关【解析】由这两个散点图可以判断,变量x与y负相关,u与v正相关,选C.4.(2013山东高考)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是().A.90B.75C.60D.45【解析】选A.产品净重小于100克的概率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,设样本容量为,则300.036n,所以120n,净重大于或等于98克并且小于104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.故选A.[来源:学科网]5.(2013陕西高考)某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()(A)9(B)18(C)27(D)36【解析】选B.由比例可得该单位老年职工共有90人,用分层抽样的比例应抽取18人.6.(2013上海高考)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()(A)甲地:总体均值为3,中位数为4(B)乙地:总体均值为1,总体方差大于0(C)丙地:中位数为2,众数为3(D)丁地:总体均值为2,总体方差为3【解析】选D.根据信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,选项A中,中位数为4,可能存在大于7的数;同理,在选项C中也有可能;选项B中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;选项D中,根据方差公式,如果有大于7的数存在,那么方差不会为3,故选D.96981001021041060.1500.1250.1000.0750.050克频率/组距7.(2013四川高考)设矩形的长为,宽为b,其比满足b∶=618.0215,这种矩形给人以美感,称为黄金矩形。黄金矩形常应用于工艺品设计中。下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是()A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定【解析】选A.甲批次的平均数为0.617,乙批次的平均数为0.613.8.(2013安徽高考)若随机变量2~(,)XN,则()PX=________.【解析】129.(2013广东高考)某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是。若用分层抽样方法,则40岁以下年龄段应抽取人.【解析】由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下年龄段的职工数为2000.5100,则应抽取的人数为4010020200人.答案:372010.(2013天津高考)某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本。已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取_______名学生。【解析】C专业的学生有1200-380-420=400,由分层抽样原理,应抽取400120401200名。答案:40.11.(2013江苏高考)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生1号2号3号4号[来源:gkstkgkstk]5号甲班67787乙班67679则以上两组数据的方差中较小的一个为2s=.【解析】考查统计中的平均值与方差的运算。甲班的方差较小,数据的平均值为7,故方差222222(67)00(87)0255s答案:2512.(2013辽宁高考)某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为______________.【解析】9801+10202+103214x=1013答案:101313.(2013浙江高考)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为元(用数字作答).【解析】对于应付的电费应分二部分构成,高峰部分为500.5681500.598;低峰部分为500.288500.318,二部分之和为148.4答案:148.414.(2013浙江高考)某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数..为.【解析】对于在区间[4,5)的频率/组距的数值为0.3,而总数为100,因此频数为30答案:3015.(2013重庆高考)从一堆苹果中任取5只,称得它们的质量如下(单位:克)125124121123127则该样本标准差s(克)(用数字作答).【解析】因为样本平均数1(125124121123127)1245x,则样本方差2222221(10313)4,5s所以2s.答案:216.(2013湖北高考)样本容量为200的频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为,数据落在[2,10)内的概率约为.【解析】由于组距为4,因此在[6,10)之间的频率为0.08×4=0.32,其频数为0.32×200=64.落在[2,10)之间的概率为(0.02+0.08)×4=0.4答案:640.417.(2013湖南高考)一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为128,则总体中的个数数位。【解析】由条件易知层中抽取的样本数是2,设层总体数是,则又由层中甲、乙都被抽到的概率是222nCC=128,可得8n,所以总体中的个数是48840.答案:4018.(2013湖南高考)一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本。已知B层中每个个体被抽到的概率都为112,则总体中的个体数为.【解析】设总体中的个体数为,则101120.12xx答案:120.19.(2013安徽高考)某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430,434,443,445,445,451,454品种B:363,371,374,383,385,386,391,392,394,394,395,397397,400,401,401,403,406,407,410,412,415,416,422,430(Ⅰ)完成所附的茎叶图.(Ⅱ)用茎叶图处理现有的数据,有什么优点?(Ⅲ)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论。【解析】(1)茎叶图如图所示AB97358736353714838356923912445775040011367542[来源:gkstkgkstk]410256733142[来源:学*科*网]240043055344[来源:学科网ZXXK]4145(2)用茎叶图处理现有的数据不仅可以看出数据的分布状况,而且可以看出每组中的具体数据.(3)通过观察茎叶图,可以发现品种A的平均每亩产量为411.1千克,品种B的平均亩产量为397.8千克.由此可知,品种A的平均亩产量比品种B的平均亩产量高.但品种A的亩产量不够稳定,而品种B的亩产量比较集中在平均产量附近.20.(2013辽宁高考)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中各抽出500件,量其内径尺寸,得结果如下表:甲厂(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面22列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”。甲厂乙厂合计优质品非优质品合计【解析】(Ⅰ)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为36072%500;……6分乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为32064%500(Ⅱ)2221

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功