《高等数学》期中试卷一.填空题(每空2分,共12分)1.设f(x)=lnx,g(x)=x+2,则f[g(x)]的定义域是2.函数y=1)1ln(xx的定义域为_____________3.1(limnnn2)2=.4.xxx2sinsinlim0=___________________5.)3(xarctg=.6./sinxe=_____________7.设y=lncosx,则dy=.8.设y=lnsinx,则dy=__________________9.设f(x)=xn(n为自然数),则f(n)(x)=.10.设f(x)=(n+1)xn,则fn(x)=_________11.212xxdx=+C.12.dxeexx)sin(=_______________二、选择题(每空2分,共10分)1.nlimnnnnn233514=()A.54B.0C.21D.2.1limx(11x-122x)=()A.-1B.0C.21D.3.xxx2sinlim20=()A.B.1C.21D.04.xlimxxtg2=()A.0B.1C.21D.25.设y=xlnx,则)3(y().(A)lnx(B)x(C)21x(D)-21x6.设y=xex,则)3(f=()A.e3B.2e3C.3e3D.4e37.若F(x)、G(x)都是f(x)的原函数,则必有()A.F(x)=G(x)B.F(x)=CG(x)C.F(x)=G(x)+CD.F(x)=C1G(x)8.若f(x)与g(x)对于区间(a,b)内每一点都有f/(x)=g/(x)则在(a,b)内必有()A.f(x)=g(x)B.f(x)=c1,g(x)=c2C.f(x)=g(x)+1D.f(x)=g(x)+C9.xxde=().(A)xxe+C(B)-xxe+C(C)xxe+xe+C(D)xxe-xe+C10.dxxf)(=F(x)+C,则.dxefexx)(().(A)F(xe)+C(B)-F(xe)+C(C)F(xe)+C(D)xeFx)(+C二.计算题:(共78分)(一)求极限:(每小题6分,共24分)1.)1(limxxx2.1.)1(limnnn3.)1311(lim31xxx4.)1311(lim31xxx5.xxx2sin2lim06.xxx2sinlim207.mnnn)11(lim)(Nm8.xxx)11(lim(二)求一阶导数:(每小题6分,共24分)1.y=ln(sinx)2.y=arcsin(2x+3)3.cos(xy)=x4.y=1+yxe5.设teytxcos求22dxyd6.设teytxsin求22dxyd7.设y=sin(1+21x),求dy8.设y=ln(x+21x),求dy(三)求积分:(每小题6分,共18分)1.dxxxxsincos2cos2.xdxxln13.dxxex4.arctgxdx5.dxex126.dxex12(四)求极值:(共12分)1.f(x)=x3-3x2-9x+52.f(x)=2x3-6x2-18x+7