1本章教学目的让学生在了解保险精算的产生与发展、基本任务和基本原理的基础上,掌握非寿险精算中保险费率的厘定方法、“大数”的测定、财务稳定性分析,以及自留额与分保额的决策;掌握寿险精算中生命表,趸缴纯保险费、年金保险纯保险费、年度纯保费和毛保险费的计算,以及理论责任准备金和实际责任准备金的计算。2第一节保险精算概述一、保险精算的产生与发展所谓精算,就是运用数学、统计学、金融学及人口学等学科的知识和原理,去解决工作中的实际问题,进而为决策提供科学依据。保险精算是以数学、统计学、金融学、保险学及人口学等学科的知识和原理,去解决商业保险和社会保障业务中需要精确计算的项目,如研究保险事故的出险规律、保险事故损失额的分布规律、保险人承担风险的平均损失及其分布规律、保险费和责任准备金等保险具体问题的计算。3第一节保险精算概述一、保险精算的产生与发展寿险精算是从寿险经营的窘境中应运而生的。当时,寿险的保费采用赋课制,未将年龄大小、死亡率高低等与保费挂钩,有关计算单一、粗糙,考虑的因素少,因而使寿险经营缺乏严密的科学基础。17世纪后半叶,世界上有两位保险精算创始人研究人寿保险计算原理取得突破性进展,一位是荷兰的政治家维德(JeandeWitt),他倡导了一种终身年金现值的计算方法,对国家的年金公债发行提供了科学依据;另一位是英国天文学家赫利(EdmundHalley),他在研究人的死亡率的基础上发明了生命表,从而使年金价值的计算更精确。18世纪40年代至50年代,辛浦森(ThomasSimpson)根据赫利的生命表,制作出依照死亡率增加而递增的费率表,陶德森(JamesDodson)依据年龄之差等因素而找出计算保险费的方法。4第一节保险精算概述一、保险精算的产生与发展与寿险精算相比,非寿险精算相对落后。但由于所定的保险费率较高,保费收入不仅超过收支相抵的适当水平,还包括了充足的准备金以应付各种意外损失,因而使保险业仍有利可图。进入20世纪以来,情况发生了根本的变化。首先,出现了前所未有的巨大风险;其次,在日益完善的保险市场上,保险人之间的竞争愈演愈烈;再者,还存在着保险费率的剧烈下降,奉行客户至上主义,甚至政府对某些险种的费率实行管制等多种因素。因此,当代的保险人不再可能收取显著高于适当水平的保费并在业务中保持。随着统计理论及其不断成熟,保险人在确定保险费率、应付意外损失的准备金、自留限额、未到期责任准备金和未决赔款准备金等方面,都力求采用更精确的方式取代以前的经验判断。5第一节保险精算概述一、保险精算的产生与发展顾名思义,精算师是在保险公司专司精算职责的人。通常,精算师在保险公司的传统职能是计算保险费率和评估公司每年度的责任准备金。随着国际保险市场的开放和保险精算的发展,有些国家已经开始授予一定的法定职能于精算师。发生这种转变的主要原因有:①政府监管部门的职责主要是确保保险市场的整体稳定、定价合理、保险公司的财务稳定和能够为投保人提供保障。②寿险品种和保险市场的发展日趋复杂,政府部门难以随时审核每家保险公司的经营情况。③部分国家和地区的精算师学会对其会员制定专业指引和守则,以确保其会员可以正确履行精算师的职能;同时,接受过专业训练的精算师,因为经常参与公司的业务,可以熟悉保险公司的整体运作。④为了增强保险公司的竞争能力,有关保险条例必须根据每家公司的不同情况灵活处理,同时必须顾及保险公司财政状况的稳定。6第一节保险精算概述二、保险精算的基本任务保险精算最初的定义是“通过对火灾、盗窃以及人的死亡等损失事故发生的概率进行估算以确定保险公司应该收取多少保费。”在寿险精算中,利率和死亡率的测算是厘定寿险成本的两个基本问题。由于利率一般是由国家控制的,所以在相当长的时期里利率并不是保险精算所关注的主要问题,而死亡率的测算即生命表的建立成为寿险精算的核心工作,现在也仍然是精算研究的课题。非寿险精算始终把损失发生的频率、损失发生的规模以及对损失的控制作为它的研究重心。现在,非寿险精算已经发展了两个重要分支:一是损失分布理论;二是风险理论。伴随着金融深化的利率市场化,保险基金的风险也变为精算研究的核心问题。在这方面要研究的问题包括投资收益的敏感性分析和投资组合分析、资产和负债的匹配等。7第一节保险精算概述三、保险精算的基本原理保险精算最基本的原理可简单归纳为收支相等原则和大数法则。所谓收支相等原则就是使保险期内纯保费收入的现金价值与支出保险金的现金价值相等。由于寿险的长期性,在计算时要考虑利率因素,可分别采取三种不同的方式:①根据保险期间末期的保费收入的本利和(终值)及支付保险金的本利和(终值)保持平衡来计算;②根据保险合同成立时的保费收入的现值和支付保险金的现值相等来计算;③根据在其他某一时点的保费收入和支付保险金的“本利和”或“现值”相等来计算。所谓大数法则,是用来说明大量的随机现象由于偶然性相互抵消所呈现的必然数量规律的一系列定理的统称。8第一节保险精算概述三、保险精算的基本原理(一)切比雪夫(Chebyshev)大数法则设,,…,,…是由两两相互独立的随机变量所构成的序列,每一随机变量都有有限方差,并且它们有公共上界:1X2XnX1X2X1111lim()1nnkknkkPXEXnn这一法则的结论运用可以说明,在承保标的数量足够大时,被保险人所交纳的纯保险费与其所能获得赔款的期望值相等。这个结论反过来,则说明保险人应如何收取纯保费。nXD()≤C,D()≤C,…D()≤C,…,则对于任意的ε0,都有:9第一节保险精算概述三、保险精算的基本原理(二)贝努利(Bernoulli)大数法则设Mn是n次贝努利实验中事件A发生的次数,而p是事件A在每次实验中出现的概率,则对于任意的ε0,都有:lim1nnMPpn在非寿险精算中,往往假设某一类标的具有相同的损失概率,为了估计这个概率的值,便可以通过以往有关结果的经验,求出一个比率——这类标的发生损失的频率。而在观察次数很多或观察周期很长的情况下,这一比率将与实际损失概率很接近。换句话说,当某个所需要求的概率不能通过等可能分析、理论概率分布近似估计等方法加以确定时,则可通过观察过去大量实验的结果而予以估计,即用比率代替概率。反过来,经估计得到的比率,可由将来大量实验所得的实际经验而修正,以增加其真实性。10第一节保险精算概述三、保险精算的基本原理(三)普阿松(Poisson)大数法则假设某一事件在第一次实验中出现的概率为P1,在第二次实验中出现的概率为P2,…,在第n次实验中出现的概率为Pn。同样用Mn来表示此事件在n次实验中发生的次数,则依据普阿松大数法则有:对于任意的ε0,成立12...lim1nnnMpppPnn普阿松大数法则的意思是说:当实验次数无限增加时,其平均概率与观察结果所得的比率将无限接近。11第二节非寿险精算一、保险费率的厘定保险费率的厘定,关键在于纯费率的确定。而纯费率的确定通常有两种方法:一是依据统计资料计算保额损失率,进而确定纯费率r;二是在损失分布和赔款条件已知的情况下,用赔款金额的期望值E除以保险金额I而得到r,即r=E/I。如果附加费率在保险费率中的比例为k,则保险费率可由R=r/(1-k)求得。12第二节非寿险精算一、保险费率的厘定(一)观察法观察法是指对个别标的的风险因素进行分析,观察其优劣,估计其损失概率,直接决定其费率。这种方法的采用,往往是因为保险标的数量较少,无法采用统计资料,因而主要凭借精算人员的知识与经验。观察法所制定的费率,最能反映个别风险的特性,具有灵活、精确的特点,这是因为:①在风险单位数量很少的情况下,不能硬性将风险性质差异很大的各风险单位集中在一块,统一制定费率,否则,将违反利用大数法则估计损失概率的前提条件;②观察法制定费率,虽是针对个别标的而言,但精算人员往往根据过去的费率和经验,以及对此标的有影响的各种风险因素进行仔细的分析,然后才确定费率;③观察法通常也要利用一些资料,只不过较为粗略而已。13第二节非寿险精算一、保险费率的厘定(二)分类法分类法是指将性质相同的风险,分别归类,而对同一分类的各风险单位,根据它们共同的损失概率,订出相同的保险费率。分类费率确定之后,经过一定时期,如与实际经验有所出入,则应进行调整,其调整公式为:AEMCE公式中各符号的含义如下:M——调整因素,即保险费应调整的百分比;A——实际损失比率;E——预期损失比率;C——信赖因素。采用上面的公式来决定费率调整的百分比,关键在于确定信赖因素C的大小。14第二节非寿险精算一、保险费率的厘定(三)增减法增减法是指在同一费率类别中,对被保险人给以变动的费率。其变动或基于在保险期间的实际损失经验,或基于其预想的损失经验,或同时以两者为基础。增减法对分类费率可能有所增加,但也可能有所减少,主要在于调整个别费率。1.表定法采用表定法时,必须首先在各分类中对各项特殊显著的风险因素设立客观标准。当被保险人购买保险时,就以这种客观标准来测度风险的大小。15第二节非寿险精算一、保险费率的厘定(三)增减法2.经验法采用经验法制定费率,是根据被保险人以往的损失经验,对按照分类费率制定的费率加以增减变动。所以经验法主要是一种调整费率的方法。采用经验法调整费率的公式为:AEMCTE公式中各符号的含义如下:M——保险费率调整的百分比;A——经验时期被保险人的实际损失;E——被保险人适用某分类时的预期损失;C——信赖因素;T——趋势因素(考虑平均赔偿金额支出趋势及物价指数的变动)。16第二节非寿险精算一、保险费率的厘定(三)增减法3、追溯法追溯法是与经验法相对的一种费率调整方式,它以保险期内被保险人的实际损失为基础,计算被保险人当期应缴的保险费。在使用这种方法时,先在保险期开始前以其他方式确定预缴保险费,然后在保险期满后,根据实际损失,对已缴保费进行增减变动,其计算公式如下:RP=[BP+L·LCF]·TM公式中符号的含义如下:RP——RetrospectivePremium,为计算所得的追溯保险费;BP——BasicPremium,为基本保险费;L——Loss,实际损失金额;LCF——LossConversionFactor,损失换算因数(其数值大于1);TM——TaxMultiplier,租税乘数(其数值大于1)。17第二节非寿险精算一、保险费率的厘定(三)增减法4、折扣法顾名思义,折扣法是对个别被保险人采用折扣费率。二、“大数”的测定在一定的要求之下,“大数”由下面的公式来测定:22(1)SppNE公式中各个符号的含义为:N——在一定条件下应具有的风险单位数。E——(相对于预期损失次数而言)实际损失变动次数与总数的比率,表示所需要的精确度。S——实际损失与预期损失相差的标准差的个数。S的值可以说明对所获得的结果的信赖程度。p——某一特定标的(风险单位)发生损失的概率。18第二节非寿险精算三、财务稳定性分析假定某公司承保的某项业务有n个保险单位,每个保险单位的保险金额为a元,纯费率为q。如果损失标准差为σ,则称aσ为赔偿金额标准差,用Q表示,即Q=aσ。把anq(即纯保费总额)称为保险赔偿基金,用P表示,即P=anq。赔偿金额标准差与保险赔偿基金的比值,称为财务稳定系数,用K表示,即K=Q/P。一般而言,财务稳定系数K越小,财务稳定性越好;反之,财务稳定系数K越大,财务稳定性越差。假定有n个保险标的,每个保险标的的保险金额为a元,损失概率为p,纯费率为q,若损失服从二项分布,则有:(1)(1)anppppKanqqn19第二节非寿险精算三、财务稳定性分析假定保险公司承保有两类业务,第一类业务承保n1个单位,每个单位的保险金额为a1元,纯费率为q1,第二类业务承保n2个单位,每个单位的保险金额为a2元,纯费率为q2。则:1111(1)nqq111Qa111111Kaanq222222Kaanq121212KQP12111222Panqanq第一类业务上