page1of10三年级奥数盈亏问题例题及答案板块一、直接计算型盈亏问题【例1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?.【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?【巩固】王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【巩固】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【巩固】学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【巩固】某学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?板块二、条件关系转换型盈亏问题【例2】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【解析】猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11101(条),由盈亏问题公式得,有小猫:818(只),猫妈妈有810888(条)鱼.【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【解析】第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是:page2of10431(个),由盈亏问题公式得,参与分玩具的同学有:919(人),有小玩具9327(个).【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?【解析】第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是422(个),由盈亏问题公式得,朝阳小学有:66233(个)班,买来足球33266(个).【巩固】一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【解析】第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是541(粒),由盈亏问题公式得,参与分糖的同学有:919(人),有糖果9545(粒).【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【解析】没辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人.因此车辆数目为:(65+15)÷5=80÷5=16(辆).学生人数为:60×(16-1)+15=60×15+15=900+15=915(人).【例3】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2张信纸,乙每封信用3张信纸,一段时间后,甲用完了所有的信封还剩下20张信纸,乙用完所有信纸还剩下10个信封,则他们每人各买了多少张信纸?【解析】由题意,如果乙用完所有的信封,那么缺30张信纸.这是盈亏问题,盈亏总额为(20+30)张信纸,两次分配的差为(3-2)张信纸,所以有信封(20+30)÷(3-2)=50(个),有信纸2×50+20=120(张).【例4】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。如全部分给小班的小朋友,每人分到8个,则缺2个。已知大班比小班多3人,问:这筐苹果共有多少个?【解析】先把大班人数和小班人数转化为一样。大班减少3人,则苹果又收回3515个苹果,人数一样,根据盈亏问题公式,小班人数为:(15102)(85)9人,苹果总数是89270个。【巩固】幼儿园把一袋糖果分给小朋友.如果分给大班的小朋友,每人5粒就缺6粒.如果分给小班的小朋友,每人4粒就余4粒.已知大班比小班少2个小朋友,这袋糖果共有多少粒?【解析】如果大班增加2个小朋友,大、小班人数就相等了,变为“每人5粒缺16粒,每人4粒多4粒”的盈亏问题.小班有(16+4)÷(5-4)=20(人).这袋糖果有4×20+4=84(粒).【例5】有一些糖,每人分5块则多10块,如果现有人数增加到原有人数的1.5倍,那么每人4块就少两块,这些糖共有多少块?【解析】第一次每人分5块,第二次每人分4块,可以认为原有的人每人拿出541块糖分给新增加的人,而新增加的人刚好是原来的一半,这样新增加的人每人可分到2块糖果,这些人每人还差422块,一共差了10212块,所以新增加了1226人,原有6212人.糖果数为:1251070(块).【巩固】卧龙自然保护区管理员把一些竹子分给若干只大熊猫,每只大熊猫分5个还多余10棵竹子,如果大熊猫数增加到3倍还少5只,那么每只大熊猫分2棵竹子还缺少8棵竹子,问有大熊猫多少只,竹子多少棵?page3of10【解析】使同学们感到困难的是条件“3倍还少5只大熊猫”.先要转化这一条件,假设还有10棵竹子,1025,就可以多有5个大熊猫,把“少5只大熊猫”这一条件暂时搁置一边,只考虑3倍大熊猫数,也相当于按原大熊猫数每只大熊猫给236(棵)竹子,每只大熊猫给5棵与给6棵,总数相差1010828(棵),所以原有大熊猫数28(65)28(只),竹子总数是52810150(棵).【巩固】体育队将一些羽毛球分给若干个人,每人5个还多余10个羽毛球,如果人数增加到3倍,那么每人分2个羽毛球还缺少8个,问有羽毛球多少个?【解析】考虑人数增加3倍后,相当于按原人数每人给2×3=6(个),每人给5个与给6个,总数相差10+8=18(个),所以原有人数18÷(6-5)=18(人),乒乓球总数是5×18+10=100(个).【例6】王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?【解析】因为桔子每人分3个多4个,而苹果是桔子的2倍,因此苹果每人分6个就多8个.又已知苹果每人分7个少5个,所以应有(8+5)÷(6-5)=13(人).苹果个数为13×7-5=86(个).桔子数为13×3+4=43(个).答:有13个小朋友,86个苹果和43个桔子.【巩固】学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?【解析】因为羽毛球拍是乒乓球拍的2倍,如果每次分羽毛球拍5×2=10(副),最后应余下15×2=30(副),因为14-5×2=4(副),分到最后还差30副,所以比每次分10副总共差30+30=60(副),所以有小组:60÷4=15(组),乒乓球拍有:5×15+15=90(副),羽毛球拍90×2=180(副).【例7】用一根长绳测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米.求绳子长度和井深.【解析】井的深度为:(5×2+4×3)÷(3-2)=22÷1=22(米).绳子长度为:(22+5)×2=27×2=54(米),或者(22-4)×3=18×3=54(米).【例8】乐乐有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.乐乐共存了多少钱?【解析】假设去掉22个2分币,那么按钱数算,5分币比2分币多8角4分,一个5分币比一个2分币多3分,所以5分币有:845228()(个);2分币有:282250(个).所以乐乐共存钱:52825013614010036276(分).【例9】阳光小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?【解析】每车多坐5人,实际是每车可坐56570(人),恰好多余了一辆车,也就是还差一辆汽车的人,即70人.因而原问题转化为:如果每车坐65人,则多出5人无车乘坐;如果每车坐70人,还少70人,求有多少人和多少辆车?车数是5565515()(辆),人数是65155980(人)或565151980()()(人).【巩固】幸福小学少先队的同学到会议室开会,若每条长椅上坐3人则多出7人,若每条长椅上多坐4人则多出3条长椅.问:到会议室开会的少先队员有多少人?【解析】第二个条件可转化为:“每条长椅上坐7个人,则少21个人”,“多7人”与“少21人”两者相差72128(人),每条长椅要多坐734(人),因此就知道,共有2847(条)长椅,人数page4of10是73728(人).【巩固】某小合唱队的同学到会议室开会,若每条长椅上坐3人则多出9人,若每条长椅上坐4人则多出3人.问:合唱队有多少人?【解析】“多9人”与“多3人”两者相差9-3=6(人),每条长椅要多座4-3=1(人),因此就知道,共有6÷1=6(条)长椅,人数是6×3+9=27(人).【巩固】少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员?共挖了多少树坑?【解析】这是一个典型的盈亏问题,关键在于要将第二句话“如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑”统一一下。即:应该统一成每人挖6个树坑,形成统一的标准。那么它就相当于每人挖6个树坑,就要差(6-4)*2=4个树坑。这样,盈亏总数就是3+4=7,所以,有少先队员7/(6-5)=7名,共挖了5*7+3=38个坑。盈亏总数等于3+(6-4)*2=7,少先队员有7/(6-5)=7名,共挖了5*7+3=38个树坑。【巩固】六年级学生出去划船。老师算了一下,如果每船坐6人,那么还剩下22人没船坐。安排时发现有3条船坏了,于是改为每船坐8人,结果还剩下6人没地方坐,请问:一共有多少学生?【解析】如果3条船没有坏,每船坐8人,那么多余了83618个座位。根据盈亏问题公式,有船(1822)(86)20条,学生人数为20622142人。【例10】学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人?【解析】每个房间住3人,则多出23人,每个房间住5人,就空出3个房间,这3个房间如果住满人应该是5315(人),由此可见,每一个房间增加532(人).两次安排人数总共相差231538(人),因此,房间总数是:38÷2=19(间),学生总数是:3192380(人),或者5195380(人).【巩固】学校为新生分配宿舍.每个房间住3人,则多出22人;每个房间多住5人,则空1个房间.问宿舍有多少间?新生