第13章三角形中的边角关系、命题与证明检测题本检测题满分:100分,时间:90分钟一、选择题(每小题3分,共30分)1.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cmB.8cm,6cm,4cmC.12cm,5cm,6cmD.2cm,3cm,6cm2.等腰三角形的两边长分别为5cm和10cm,则此三角形的周长是()A.15cmB.20cmC.25cmD.20cm或25cm3.命题:①邻补角互补;②对顶角相等;③同旁内角互补;④两点之间线段最短;⑤直线都相等.其中真命题有()A.1个B.2个C.3个D.4个4.已知△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定()A.小于直角B.等于直角C.大于直角D.不能确定5.下列命题中正确的是()A.三角形可分为斜三角形、直角三角形和锐角三角形B.等腰三角形任一个内角都有可能是钝角或直角C.三角形的外角一定是钝角D.在△ABC中,如果∠A∠B∠C,那么∠A60°,∠C60°6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7.不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对8.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°9.下面关于基本事实和定理的联系说法不正确的是()A.基本事实和定理都是真命题B.基本事实就是定理,定理也是基本事实C.基本事实和定理都可以作为推理论证的依据[来源:.基本事实的正确性不需证明,定理的正确性需证明10.下列条件:①∠A+∠B=∠C,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.在Rt△ABC中,一个锐角为25°,则另一个锐角为.12.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=度.13.“两条直线被第三条直线所截,同位角相等”的条件是,结论是.14.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为.第12题图第8题图15.设为△ABC的三边长,则.16.如图所示,AB=29,BC=19,AD=20,CD=16,若AC=,则的取值范围为.[来源:]17.如图所示,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC=________.18.“直角三角形有两个角是锐角”这个命题的逆命题是,它是一个命题.三、解答题(共46分)19.(6分)下列句子是命题吗?若是,把它改写成“如果……那么……”的形式,并写出它的逆命题,同时判断原命题和逆命题的真假.(1)一个角的补角比这个角的余角大多少度?(2)垂线段最短,对吗?(3)等角的补角相等.(4)两条直线相交只有一个交点.(5)同旁内角互补.(6)邻补角的角平分线互相垂直.20.(6分)如图所示,在△ABC中,AB=AC,AC上的中线把三角形的周长分为24cm和30cm的两个部分,求三角形各边的长.[来源:数理化网][来源:]21.(6分)如图,已知在△ABC中,∠B与∠C的平分线交于点P.[来源:](1)当∠A=70°时,求∠BPC的度数;(2)当∠A=112°时,求∠BPC的度数;(3)当∠A=时,求∠BPC的度数.22.(6分)已知一个三角形有两边长均为,第三边长为,若该三角形的边长都为整数,试判断此三角形的形状.23.(6分)如图所示,武汉有三个车站A、B、C成三角形,一辆公共汽车从B站前往到C站.(1)当汽车运动到点D时,刚好BD=CD,连接线段AD,AD这条线段是什么线段?这样的线段在△ABC中有几条呢?此时有面积相等的三角形吗?(2)汽车继续向前运动,当运动到点E时,发现∠BAE=∠CAE,那么AE这条线段是什BACD第16题图21PCBA第17题图第20题图第21题图么线段呢?在△ABC中,这样的线段又有几条呢?(3)汽车继续向前运动,当运动到点F时,发现∠AFB=∠AFC=90°,则AF是什么线段?这样的线段在△ABC中有几条?24.(8分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.25.(8分)规定,满足(1)各边互不相等且均为整数,(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为比高三角形,其中k叫做比高系数.根据规定解答下列问题:(1)求周长为13的比高系数k的值.(2)写出一个只有4个比高系数的比高三角形的周长.第23题图第24题图