22.1二次函数(3)教学设计课题22.1二次函数(3)主备教师:教学分析教学目标知识与技能目标使学生能利用描点法正确作出函数y=ax2+b的图象。过程与方法目标让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。情感态度与价值观目标师生互动,学生动手操作,体验成功的喜悦教学重点会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系教学难点正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系教学过程教师活动学生活动设计说明和媒体运用环节时间一、提出问题二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。二、分析问题,解决问题问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?解:(1)列表:x…-3-2-10123…y=x2…188202818…y=x2+1…1993l3919…(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。(图象略)问题3:当自变量x取同二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?(画出函数y=2x2和函数y=2x2的图象,并加以比较)让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。让学生观察两个函数图象,说出函数y=2x2+1与y=1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=2x2的图象。2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=2x2+1的对应值表,并让学生画出函数y=2x2+1的图象.3.教师写出解题过程,同学生所画图象进行比较。教师引导学生观察上表,当x依次取-1010一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?问题4:函数y=2x2+1和y=2x2的图象有什么联系?由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。问题5:现在你能回答前面提出的第2个问题了吗?问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?三、做一做问题7:先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?四、练习:P7练习。五、小结在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。1.在学生画函数图象的同时,教师巡视指导;2.让学生发表意见,归纳为:函数y=2x2-2与函数y=2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y=2x2-2的图象可以看成是将函数y=2x2的3,-2,-1,0,1,2,3时,两个函数的函数值之间有什么关系,由此教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。173板书设计22.1二次函数(3)函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。作业P41:5(1)反思