2.4.2二次函数的应用(2)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

义务教育教科书(北师)九年级数学下册第二章二次函数顶点式,对称轴和顶点坐标公式:2、利润=售价-进价.1.二次函数y=ax2+bx+c(a≠0)的性质abacab44,22.44222abacabxay总利润=每件利润×销售数量.abx2直线1.某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.增种多少棵橙子树时,总产量最大?如果设果园增种x棵橙子树,总产量为y个,则xxy56001006000010052xx.605001052x设销售价为x元(x≤13.5元),利润是y元,则2.某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与单价满足如下关系:在一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.当销售单价为多少元时,可以获得最大利润,最大利润是多少元?驶向胜利的彼岸xxy5.132005005.2800037002002xx.5.911225.92002x例1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?驶向胜利的彼岸设销售价为x元(x≥30元),利润为y元,则202040020xxy20000140202xx.450035202x(1)写出售价x(元/件)与每天所得利润y(元)之间的函数关系式;(2)每件定价多少元时,才能使一天的利润最大?例2.某人开始时,将进价为8元的某种商品按每件10元销售,每天可售出100件.他想采用提高最大售价的办法来增加利润.经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.驶向胜利的彼岸1010100)8(xxy.36014102x1600280102xx设旅行团人数为x人,营业额为y元,则1.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?驶向胜利的彼岸3010800xxy.3025055102xxx11001022.某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元~70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).目标与检测2求销售单价为x(元/千克)与日均获利y(元)之间的函数关系式,并注明x的取值范围(提示:日均获利=每千克获利与×均销售量-其它费用)和获得的最大利润..19506522x650026022xx50070260)30(xxy(1)写出售价x(元/千克)与月销售利润y(元)之间的函数关系式;(2)当销售单价定为55元时,计算出月销售量和销售利润;(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?3.某商店销售一种销售成本为40元的水产品,若按50元/千克销售,一月可售出5000千克,销售价每涨价1元,月销售量就减少10千克..900070102x40000140102xx5010500)40(xxy.4505055105002.67504501050).(60,80800021舍去解得由xxy4.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现:若每箱发50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出售价x(元/箱)与每天所得利润w(元)之间的函数关系式;(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?xxy50390)40(.12006032x960036032xx50390)40(xxy或知识升华驶向胜利的彼岸这节课我们学习利润最大化问题,要根据每件产品的利润乘以产品的个数列出函数关系式,并根据配方得到最大(最小)值。

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功