西藏大学理学院数学系第一章小结高等数学(一)函数的定义(二)极限的概念(三)连续的概念一、主要内容西藏大学理学院数学系第一章小结高等数学函数的定义反函数隐函数反函数与直接函数之间关系基本初等函数复合函数初等函数函数的性质单值与多值奇偶性单调性有界性周期性双曲函数与反双曲函数西藏大学理学院数学系第一章小结高等数学1、函数的定义.记作的函数,是对应,则称则总有确定的数值和它按照一定法,变量集.如果对于每个数是一个给定的数是两个变量,和设定义 )(xfyxyyDxDyx叫做因变量.叫做自变量,,叫做这个函数的定义域数集yxD.}),({称为函数的值域函数值全体组成的数集DxxfyyW西藏大学理学院数学系第一章小结高等数学函数的分类函数初等函数非初等函数(分段函数,有无穷多项等函数)代数函数超越函数有理函数无理函数有理整函数(多项式函数)有理分函数(分式函数)西藏大学理学院数学系第一章小结高等数学(1)单值性与多值性:若对于每一个Dx,仅有一个值)(xfy与之对应,则称)(xf为单值函数,否则就是多值函数.xyoxeyxyo1)1(22yx2、函数的性质西藏大学理学院数学系第一章小结高等数学(2)函数的奇偶性:偶函数奇函数有对于关于原点对称设,,DxD;)()()(为偶函数称xfxfxf;)()()(为奇函数称xfxfxfyxoxyoxy3xy西藏大学理学院数学系第一章小结高等数学(3)函数的单调性:设函数f(x)的定义域为D,区间ID,如果对于区间I上任意两点及,当时,恒有:(1),则称函数在区间I上是单调增加的;或(2),则称函数在区间I上是单调递减的;单调增加和单调减少的函数统称为单调函数。1x2x21xx)()()()(2121xfxfxfxf)(xf)(xfxyo2xy;0时为减函数当x;0时为增函数当x西藏大学理学院数学系第一章小结高等数学..)(,)(,,0,否则称无界上有界在则称函数成立有若XxfMxfXxMDX(4)函数的有界性:;),0()0,(上无界及在.),1[]1,(上有界及在xyoxy111西藏大学理学院数学系第一章小结高等数学设函数f(x)的定义域为D,如果存在一个不为零的数l,使得对于任一,有.且f(x+l)=f(x)恒成立,则称f(x)为周期函数,l称为f(x)的周期.(通常说周期函数的周期是指其最小正周期).DxDlx)((5)函数的周期性:oyx11][xxy1T西藏大学理学院数学系第一章小结高等数学3、反函数.)()(1称为反函数确定的由xfyxfy0yexy如4、隐函数.)(0),(称为隐函数所确定的函数由方程xfyyxFxysinh)(1xfysinharx西藏大学理学院数学系第一章小结高等数学)(xfyxyo)),((xxf))(,(xfx)(1xfy则函数是一一对应设函数,)(xffDxxxffxff))(())((111.)()(21xyxfyxfy图象对称于直线的与5、反函数与直接函数之间的关系西藏大学理学院数学系第一章小结高等数学6、基本初等函数1)幂函数)(是常数xy2)指数函数)1,0(aaayx3)对数函数)1,0(logaaxya4)三角函数;cosxy;sinxy5)反三角函数;arccosxy;arcsinxy;cotxy;tanxy;arctanxyycotarcx西藏大学理学院数学系第一章小结高等数学7、复合函数设函数)(ufy的定义域fD,而函数)(xu的值域为Z,若ZDf,则称函数)]([xfy为x的复合函数.8、初等函数由常数和基本初等函数经过有限次四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.西藏大学理学院数学系第一章小结高等数学9、双曲函数与反双曲函数2sinhxxeex双曲正弦2coshxxeex双曲余弦xxxxeeeexxxcoshsinhtanh双曲正切双曲函数常用公式西藏大学理学院数学系第一章小结高等数学ararar;coshsinh22sinhxxx;sinhxy反双曲正弦;tanxy反双曲正切;coshxy反双曲余弦;sinhsinhcoshcosh)cosh(yxyxyx;1sinhcosh22xx.sinhcosh2cosh22xxx;sinhcoshcoshsinh)sinh(yxyxyx西藏大学理学院数学系第一章小结高等数学左右极限两个重要极限求极限的常用方法无穷小的性质极限存在的充要条件判定极限存在的准则无穷小的比较极限的性质数列极限函数极限axnnlimAxfxx)(lim0Axfx)(lim等价无穷小及其性质唯一性无穷小0)(limxf两者的关系无穷大)(limxf西藏大学理学院数学系第一章小结高等数学.,,0,0axNnNn恒有时使1、极限的定义定义N定义如果对于任意给定的正数(不论它多么小),总存在正数N,使得对于Nn时的一切nx,不等式axn都成立,那末就称常数a是数列nx的极限,或者称数列nx收敛于a,记为,limaxnn或).(naxn西藏大学理学院数学系第一章小结高等数学定义.)(,0,0,00Axfxx恒有时使当定义2如果对于任意给定的正数(不论它多么小),总存在正数,使得对于适合不等式00xx的一切x,对应的函数值)(xf都满足不等式Axf)(,那末常数A就叫函数)(xf当0xx时的极限,记作)()()(lim00xxAxfAxfxx当或西藏大学理学院数学系第一章小结高等数学左极限.)(,,0,000Axfxxx恒有时使当右极限.)(,,0,000Axfxxx恒有时使当.)0()(lim0)(000AxfAxfxxxx或记作.)0()(lim0)(000AxfAxfxxxx或记作.)0()0()(lim:000AxfxfAxfxx定理西藏大学理学院数学系第一章小结高等数学无穷小:极限为零的变量称为无穷小.).0)(lim(0)(lim0xfxfxxx或记作绝对值无限增大的变量称为无穷大.无穷大:).)(lim()(lim0xfxfxxx或记作在同一过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大.无穷小与无穷大的关系2、无穷小与无穷大西藏大学理学院数学系第一章小结高等数学定理.0,)()(lim)3(;)]()(lim[)2(;)]()(lim[)1(,)(lim,)(limBBAxgxfBAxgxfBAxgxfBxgAxf其中则设推论1).(lim)](lim[,,)(limxfcxcfcxf则为常数而存在如果.)]([lim)](lim[,,)(limnnxfxfnxf则是正整数而存在如果推论23、极限的性质西藏大学理学院数学系第一章小结高等数学4、求极限的方法a.多项式与分式函数代入法求极限;b.利用数列和函数极限的迫敛性和四则运算法则;c.利用两个重要极限;d.利用无穷小运算性质求极限;e.利用左右极限求分段函数极限.f.利用等价无穷小量.g.利用初等函数的连续性求极限.西藏大学理学院数学系第一章小结高等数学5、判定极限存在的准则准则Ⅱ单调有界数列必有极限.(夹逼准则)准则Ⅰ′如果当),(00rxUx(或Mx)时,有,)(lim,)(lim)2(),()()()1()()(00AxhAxgxhxfxgxxxxxx那末)(lim)(0xfxxx存在,且等于A.西藏大学理学院数学系第一章小结高等数学(1)1sinlim0xxx(2)exxx)11(limexxx10)1(lim;1sinlim某过程.)1(lim1e某过程6、两个重要极限西藏大学理学院数学系第一章小结高等数学);(,,0lim)1(o记作高阶的无穷小是比就说如果定义:.0,,且穷小是同一过程中的两个无设;),0(lim)2(是同阶的无穷小与就说如果CC;~;,1lim记作是等价的无穷小与则称如果特殊地7、无穷小的比较西藏大学理学院数学系第一章小结高等数学定理(等价无穷小替换定理).limlim,lim~,~则存在且设.),0,0(lim)3(无穷小阶的是是就说如果kkCCk定理若)(limxf存在,则极限唯一.8、等价无穷小的性质9、极限的唯一性西藏大学理学院数学系第一章小结高等数学左右连续在区间[a,b]上连续连续函数的性质初等函数的连续性间断点定义连续定义0lim0yx)()(lim00xfxfxx连续的充要条件连续函数的运算性质振荡间断点无穷间断点跳跃间断点可去间断点第一类第二类西藏大学理学院数学系第一章小结高等数学定义1设函数)(xf在点0x的某一邻域内有定义,如果当自变量的增量x趋向于零时,对应的函数的增量y也趋向于零,即0lim0yx或0)]()([lim000xfxxfx那末就称函数)(xf在点0x连续,0x称为)(xf的连续点.1、连续的定义).()(lim200xfxfxx定义西藏大学理学院数学系第一章小结高等数学定理.)()(00既左连续又右连续处在是函数处连续在函数xxfxxf.)(),()0(,),[)(0000处右连续在点则称且内有定义在若函数xxfxfxfbxxf3、连续的充要条件2、单侧连续;)(),()0(,],()(0000处左连续在点则称且内有定义在若函数xxfxfxfxaxf西藏大学理学院数学系第一章小结高等数学:)(0条件处连续必须满足的三个在点函数xxf;)()1(0处有定义在点xxf;)(lim)2(0存在xfxx).()(lim)3(00xfxfxx).()(),()(,00或间断点的不连续点为并称点或间断处不连续在点函数则称要有一个不满足如果上述三个条件中只xfxxxf4、间断点的定义西藏大学理学院数学系第一章小结高等数学(1)跳跃间断点.)(),0()0(,,)(0000的跳跃间断点为函数则称点但存在右极限都处左在点如果xfxxfxfxxf(2)可去间断点.)()(),()(lim,)(00000的可去间断点为函数义则称点处无定在点或但处的极限存在在点如果xfxxxfxfAxfxxfxx5、间断点的分类西藏大学理学院数学系第一章小结高等数学跳跃间断点与可去间断点统称为第一类间断点.特点:.,0右极限都存在处的左函数在点x可去型第一类间断点跳跃型0yx0x0yx0x西藏大学理学院数学系第一章小结高等数学0yx无穷型振荡型第二类间断点0yx0x第二类间断点.)(,,)(00类间断点的第二为函数则称点至少有一个不存在右极限处的左在点如果xfxxxf西藏大学理学院数学系第一章小结高等数学.],[)(,,,),(上连续在闭区间函数则称处左连续在右端点处右连续并且在左端点内连续如果函数在开区间baxfbxaxba6、闭区间的连续性7、连续性的运算性质定理.)0)(()()(),()(),()(,)(),(000处也连续在点则处连续在点若函数xxgxgxfxgxfxgxfxxgxf西藏大学理学院数学系第一章小结高等数学定理1严格单调的连续函数必有严格单调的连续反函数.定理2)].(lim[)()]([lim,)(,)(lim000xfafxfaufaxxxxxxx则有连续在点函数若8、初等函数的连续性.)]([,)(,)(,)(00000也连续在点则复合函数连续在点而函数且连续