初三数学旋转综合知识点检测题一、选择题1.将叶片图案旋转180°后,得到的图形是()2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于()A.60°B.105°C.120°D.135°3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是()A.50°B.60°C.70°D.80°4.在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是()A.(-4,3)B.(-3,4)C.(3,-4)D.(4,-3)5.在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为()A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)6.如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中,能将△ABC变换成△PQR的是()A.①②B.①③C.②③D.①②③7.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()8.如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为()A.B.C.D.二、填空题9.写出两个你熟悉的中心对称的几何图形名称,它们是____________.10.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为_____________.11.△ABC是等边三角形,点O是三条中线的交点,△ABC以点O为旋转中心,旋转____________度后能与原来的图形重合12.如图,若将△ABC绕点O顺时针旋转180°后得到△A′B′C′,则A点的对应点A′点的坐标是_____________.13.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.三、解答题14如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.15.如图,已知△ABC和△A″B″C″及点O.⑴画出△ABC关于点O对称的△A′B′C′;⑵若△A″B″C″与△ABC关于点O′对称,请确定点O′的位置;16.如图,在网格中有一个四边形图案.(1)请你画出此图案绕点D顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为l,旋转后点A的对应点依次为A1、A2、A3,求四边形AA1A2A3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.17.已知:如图在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由.(2)若△ABC的面积为3cm2,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.19.如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.20.如图,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形解答下列问题:(1)图中的格点△DEF是由格点△ABC通过怎样的变换得到的?(写出变换过程)(2)在图中建立适当的直角坐标系,写出△DEF各顶点的坐标.答案与解析一、选择题1.D2.B3.C4.A5.C6.D7.C8.C二、填空题9.正方形、菱形、平行四边形、矩形、圆等10.72°11.平行四边形12.(3,-2)13.14.(-1,)三、解答题15.P(0,1),如图16.(1)(2)17.(1);(2)=-4=34;(3)结论:AB2+BC2=AC218.(1)AE与BF平行且相等,∵ABC绕点C顺时针旋转180°得到△FEC,∴△ABC与△FEC关于C点中心对称,∴AC=CF,BC=CE,∴四边形ABFE为平行四边形,∴;(2)∵AC=CF,∴S△BCF=S△ABC=3,∵BC=CE,∴S△ABC=S△ACE=3,∴S△CEF=S△BCF=3,∴S□ABFE=3×4=12(cm2).(3)当∠ACB=60°时,四边形ABFE为矩形,∵AB=AC,∴∠ABC=∠ACB=60°,∴AB=BC=CA∴AF=BE∴平行四边形ABFE为矩形.19.(1)猜想:AF=BD且AF⊥BD.证明:设AF与DC交点为G.∵FC=DC,AC=BC,∠BCD=∠BCA+∠ACD,∠ACF=∠DCF+∠ACD,∠BCA=∠DCF=90°,∴∠BCD=∠ACF.∴△ACF≌△BCD.∴AF=BD.∴∠AFC=∠BDC.∵∠AFC+∠FGC=90°,∠FGC=DGA,∴∠BDC+∠DGA=90°.∴AF⊥BD.∴AF=BD且AF⊥BD.(2)结论:AF=BD且AF⊥BD.图形不唯一,只要符合要求即可.如:①CD边在△ABC的内部时;②CF边在△ABC的内部时.20.解:(1)答案不唯一,只要合理即可.如:方法一:将△ABC以点C为旋转中心,按逆时针方向旋转90°得到△A1B1C,再将△A1B1C向右平移3个格就得到△DEF;方法二:将△ABC向右平移3个格得到△A1B1C1,再将△A1B1C1以点C1为旋转中心,按逆时针方向旋转90°就得到了△DEF;方法三:将△ABC以点B为旋转中心,按逆时针方向旋转90°得到△A1BC1,再将△A1BC1向下平移4个格得到△A2B2C2,再将△A2B2C2向右平移7个格就得到了△DEF.方法四:将△ABC以点A为旋转中心,按逆时针方向旋转90°得到△AB1C1,再将△AB1C1向下平移4个格得到△A2B2C2,再将△A2B2C2向下平移5个格就得到了△DEF.(2)答案不唯一,只要正确建立直角坐标系并正确写出各点坐标,即可.如:方法一:如图①建立直角坐标系,则点D(0,0)、E(2,-1)、F(2,3);方法二:如图②建立直角坐标系,则点D(-2,0)、E(0,-1)、F(0,3);方法三:如图③建立直角坐标系,则点D(-2,-3)、E(0,-4)、F(0,0);方法四:如图④建立直角坐标系,则点D(-2,1)、E(0,0)、F(0,4).