2020考研数学三真题及解析(完整版)一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.1.设lim(),limsin()sinxxfxafxabxaxa则A.sinbaB.cosbaC.sin()bfaD.cos()bfa答案:B解析:sin()sin[()]limlimcoscos.xaxafxafxabaxaxa(其中介于()fx与a之间)选B2.11ln|1|()12xxexfxex第二类间断点个数A.1B.2C.3D.4答案:C解析:0,2,1,1xxxx为间断点111110000ln|1|ln|1|ln|1|lim()limlimlim(1)(2)222xxxxxxexexexefxexxx0x为可去间断点1122ln|1|lim()lim(1)(2)xxxxexfxex2x为第二类间断点1111ln|1|lim()lim0(1)(2)xxxxexfxex1111ln|1|lim()lim(1)(2)xxxxexfxex1x为第二类间断点1111ln|1|lim()lim(1)(2)xxxxexfxex1x为第二类间断点3.设奇函数()fx在(,)上具有连续导数,则A.0cos()'()xftftdt是奇函数B.0cos()'()xftftdt是偶函数C.0cos'()()xftftdt是奇函数D.0cos'()()xftftdt是偶函数答案:A解析:0()[cos()()]dxFxftftt()cos()()Fxfxfx由()fx为奇函数知,()fx为偶函数.cos()fx为偶函数.故()Fx为偶函数.()Fx为奇数选A4.设幂级数1(2)nnnnax的收敛区间为(-2,6),则21(1)nnnax的收敛区间为A.(-2,6)B.(-3,1)C.(-5,3)D.(-17,15)答案:B解析:由于1111(1)11limlim4nnnnnnnaanaaR12121lim4.4nnnaRa 222RR,故所求收敛域为(-3,1),选B.5.设4阶矩阵()ijAa不可逆,12a的代数余子式1212340,,,,A为矩阵A的列向量组,*A为A的伴随矩阵,则*0Ax的通解为A.112233xkkkB.112234xkkkC.112334xkkkD.122334xkkk答案:C解析:∵A不可逆∴|A|=0∵120A∴()3rA∴*()1rA∴*0Ax的基础解系有3个线性无关的解向量.∵*||0AAAE∴A的每一列都是*0Ax的解又∵120A∴134,,线性无关∴*0Ax的通解为112334xkkk,故选C.6.设A为3阶矩阵,12,为A的属于特征值1的线性无关的特征向量,3为A的属于-1的特征向量,则1100010001PAP的可逆矩阵P为A.1323(,,)B.1223(,,)C.1332(,,)D.1232(,,)答案:D解析:1122,AA33A1100010001PAPP的1,3两列为1的线性无关的特征向量122,P的第2列为A的属于-1的特征向量3.1232(,,)P选D7.设,,ABC为三个随机事件,且1()()()4PAPBPC,()0PAB,()PAC1()12PBC,则,,ABC中恰有一个事件发生的概率为A.34B.23C.12D.512答案:D解析:()()()[()]PABCPABUCPAPABUC()()()()()()111004126PAPABACPAPABPACPABC()()()[()]()()()()111004126PBACPBAUCPBPBAUCPBPBAPBCPABC()()()[()]()()()()111104121212PCBAPCBUAPCPCUBUAPCPCBPCAPABC()()()()1115661212PABCABCABCPABCPABCPABC8.设随机变量(,)XY服从二维正态分布10,0;1,4;2N,随机变量中服从标准正态分布且与X独立的是A.5()5XYB.5()5XYC.3()3XYD.3()3XY答案:C解析:312()cov(,)333DXYDXDYXY1233521333()033()~(0,1).3DXDYDXDYEXYXYN二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定的位置上9.设arctan[sin()],zxyxy则(0,)d|z________.解析:dddzzzxyxx2(0,π)1[cos()],π11[sin()]zzyxyxxyxyx2(0,π)1[cos()],11[sin()]zzxxyyxyxyy∴(0,π)(π1)ddzxyx10.曲线2e0xyxy在点(0,-1)处的切线方程为________.解析:21(22)0xyyeyxy①将0,1xy代入①得1.yk11(0)1.yxyx即11.Q表示产量,成本()10013CQQ,单价p,需求量800()2.3QPP则工厂取得利润最大时的产量为______.解析:()LQPCQ8003100132800161002QQQQQQ22160016(2)()0(2)8QLQQQ12.设平面区域21(,),0121xDxyyxx,则D绕y轴旋转所成旋转体体积为______.解析:11222102xdyxdy1122102121312014141ln32411ln23821ln23ydydyyyy13.行列式011011110110aaaa________.解析:2224201101101101111011011000011110111111000021214.00aaaaaaaaaaaaaaaaaaaaaaaaaa14.随机变量X的概率分布1{},1,2,32kPXkkY…,表示X被3除的余数,则()EY=______.解析:{0}{3,1,2.}PYPXkkL3101{1}{31,0,1,2.}2kkPYPXkkL3201{2}{32,0,1,2.}2kkPYPXkkL31320011()1222kkkkEY11111122118887三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.已知,ab为常数,11enn与abn,当n时为等价无穷小,求,ab.15.【解】1ln11ln112111e11limlim[ee]1lime[e1]11limeln11111lime1211lime2nnannnanannananannnbbnnbnnbnnnbnnnb10a1e112abe2b16.求二元函数33(,)8fxyxyxy的极值解析:.求一阶导可得22324fxyxfyxy令100601012fxxxfyyy可得求二阶导可得2222226148fffxyxxyy当0,00.1.0xyABC时.20ACB故不是极值.当11612xy时1.1.4.ABC2110.10,612ACBA故且极小值极小值33111111,8661261212216f17.若250,(0)1,(0)1yyyff,则(1)求()fx(2)()dnnafxx,求1nnia解析:(1)250yyy的特征方程为2250rr∴1212ri∴12()e(cos2sin2)xyxcxcx1212()e(cos2sin2)e(2sin22cos2)xxyxcxcxcxcx∵(0)1,(0)1yy∴121,0cc∴()ecos2xyxx(2)()decos2dxnnnafxxxxcos2decos2eedcos2e2esin2de2sin2dee2sin2e2ecos2d5e1e5xxxnnnnxnnxnnxxnnnnnnxxxxxxxxxaa211[eee]51e[1e]51e11e5e1nniinna…18.21(,)(,)ddxDfxyyxfxyxy其中221(,)0xyDxyy求(,)dDxfxy解析:积分区域D如图:2(,)1(,)ddDfxyyxxfxyxy两边积分得2(,)dd1dd(,)ddddDDDDfxyxyyxxyfxyxyxxy21122001dd2d1dxDyxxyxyxy1220121(1)d2xxx31220(1)dxx42031πsincosd422xttt3π16dd0Dxxy所以3π(,)dd16Dfxyxy23π(,)116fxyyxx从而223π(,)dd1dddd16DDDxfxyxyxyxxyxxy23πdd16Dxxy2112003πdd16xxxy12203π1d16xxx22203πsinsincosd16xtttt22203πsin(1sin)d16ttt3π1π31π16224223π25619.()fx在[0,2]上具有连续导数,max{|()|},[0,2]Mfxx(1)证[0,2]|()|Mf(2)若[0,2]|()|0xfxMM则解析:证明:(1)由max{|()|}[0,2]Mfxx,知存在[0,2]c,使|()|fcM,若[0,1]c由拉格朗日中值定理得至少存在一点(0,)c,使()(0)()()fcffcfcc从而|()||()|fcMfMcc若(1,2]c,同理存在(,2)c使(2)()()()22ffcfcfcc从而|()||()|22fcMfMc