***********************************************************数学史与数学教育绪言(一)1第一部数学史著作是()写的《数学史》。A、阿基米德B、蒙蒂克拉C、华里司D、祖冲之正确答案:B2数学史成为一个独立的学科的标志是()问世。A、《算术史》B、《几何史》C、《数学史讲义》D、《新数学年刊》正确答案:C3数学史中最有影响的数学史著作是()A、《算术史》B、《数学史讲义》C、《几何原本》D、《新数学年刊》正确答案:B41855年法国戴尔卡《新数学年刊》后增设()成为历史上最早的数学史专业刊物,数学史开始为数学教育服务。A、《算术史》B、《数学史讲义》C、《几何原本》D、《数学历史、传记与文献通报》正确答案:D5历史的相似性的提出者是()。A、阿基米德B、蒙蒂克拉C、华里司D、德摩根正确答案:D6数学史和数学教育可以为以后的数学教学提供许多教学资源。()正确答案:√7公元前5世纪的《数学史》中有很多关于趣味数学的故事。()正确答案:×数学史与数学教育绪言(二)1美国第一位数学史家是()。A、蒙蒂克拉B、史密斯C、卡约黎D、德摩根正确答案:C2我国古代()开始引入〇的符号A、唐代B、宋代C、汉代D、元代正确答案:B3“数学史是比面包和黄油更可口的蜂蜜。”是()对数学史重要性的评价。A、阿基米德B、德摩根C、华里司D、卡约黎正确答案:B4人们可以做出一个角的三等分角。()正确答案:×5倍立方体问题是现在数学界无法解决的三大难题之一。()正确答案:√数学史与数学教育绪言(三)1()年美国开始开设数学史课程。A、1894B、1893C、1892D、1891正确答案:D2()提出了生物发生定律,运用到数学教学即历史发生原理。A、卡约黎B、E·haeckelC、华里司D、德摩根正确答案:B3学生学习遇到的数学问题也是数学史家历史上遇到的问题。()正确答案:√420世纪80年代,我国开始超过半数的师范类大学开设课程。()正确答案:×数学史与数学教育绪言(四)1HPM的研究内容中,()是关于数学教学方法的研究。A、基于数学史的教学设计B、数学史研究C、历史的相似性D、以上各项都不是正确答案:C2下列哪一所高校没有举行过中国HPM会议。()A、北京师范大学B、东北师范大学C、河北师范大学D、华东师范大学正确答案:B3古代记录日期和时间的工具是()。A、沙漏B、太阳C、月亮D、日晷正确答案:D4国际HPM会议每隔5年召开一次。()正确答案:×5希腊三世纪天文学家发现,当月亮半圆的时候,月、地、日三个圆心呈直角三角形的关系。()正确答案:×数学史与数学教育绪言(五)1驴桥定理指的是()。A、三角形内角和定理B、角边角定理C、边角边定理D、等腰三角形底角相等定理正确答案:D2平面直角坐标系中四个部分叫象限,源于()。A、《算术史》B、《周髀算经》C、《易经》D、《几何史》正确答案:C3数学归纳法的命名者是()。A、戴德金B、德摩根C、卡约黎D、阿基米德正确答案:B4古代6世纪以色列马塞克将黄道分成十二宫,每一宫分成30份,因此圆分成360份。()正确答案:√5所有数学中的为什么都可以用数学史的知识来解答。()正确答案:×数学史与数学教育绪言(六)1历史上的数学桥是()设计的。A、德摩根B、卡约黎C、牛顿D、阿基米德正确答案:C2“祖氏定理”的提出者是()。A、祖约B、祖逖C、祖冲之D、祖暅正确答案:D3“在科学和人文之间只有一座桥梁,那就是科学史。”这句名言是()的。A、德摩根B、萨顿C、牛顿D、阿基米德正确答案:B4任何桥梁的设计都必须运用三角形的稳定性的特性。()正确答案:×5数学和人文之间的桥梁是数学史。()正确答案:√数学史与数学教育绪言(七)1数学史上的“圣经”是()。A、《算术史》B、《周髀算经》C、《数学史》D、《几何原本》正确答案:D2历史上第一个对费马大定理做出杰出贡献的数学家是()。A、萨顿B、索菲·热尔曼C、戴德金D、德摩根正确答案:B3我国第二本微积分教材是()。A、《几何原本》B、《微积分》C、《微积溯源》D、《解析几何》正确答案:C4热尔曼因为阿基米德的故事而坚定数学学习,认为数学是最有魅的学科。()正确答案:√5徐光启和利玛窦共同翻译了15卷《几何原本》。()正确答案:×数学史与数学教育绪言(八)1下列哪一位数学家曾经对“负负得正”产生过迷惑。()A、索菲·热尔曼B、戴德金C、法布尔D、罗伯森正确答案:C2著名哲学家()40岁开始学习勾股定理。A、亚里士多德B、托马斯·霍布斯C、西塞罗D、黑格尔正确答案:B3政治家林肯酷爱的数学著作是()A、《算术史》B、《周髀算经》C、《数学史》D、《几何原本》正确答案:D4法布尔的《昆虫记》是一部数学史著作,记录了很多数学故事。()正确答案:×5学习数学,特别是数学教师学习数学,必须要了解数学背后的人文知识和人文精神。()正确答案:√数学史与数学教育绪言(九)1笛卡尔为了研究()问题而发明解析几何。A、折射B、轨迹C、切线D、悬链线正确答案:B2()强调“教学要符合自然发展的规律。A、约翰·第B、法布尔C、第斯多惠D、戴德金正确答案:C3“假如我们把自然看做我们的向导,她是不会把我们领入歧途的。”是()的名言。A、约翰·第B、法布尔C、第斯多惠D、西塞罗正确答案:D4数学是探索宇宙的工具,可以探索人生的哲理。()正确答案:√5数学教学将定理、公式灌输给学生比按照自然的方式进行讲解效果要好,学生更容易掌握。()本答案由微信公众号:帮帮ING制作获取全部300门尔雅选修课答案请关注微信公众号:帮帮ING正确答案:×数学史、数学情感与数学观(一)1()在著名日记体小说《TheMoralsofMarcusOrdeyne》中阐述了教师对数学的消极情感。A、欧玛尔·海亚姆B、法布尔C、第斯多惠D、洛克正确答案:D2“兴趣是创造一个欢乐文明的教学情境的主要途径之一。”是()的名言。A、裴斯泰洛奇B、夸美纽斯C、第斯多惠D、布鲁斯正确答案:B3著名数学家祖冲之的故乡是河北()。A、蔚县B、威县C、涞水县D、雄县正确答案:C4中国人比两河流域的人民更早认识勾股定理。()正确答案:×5阿道尔夫·第斯多惠认为唯有有教养的人才能领会兴趣。()正确答案:√数学史、数学情感与数学观(二)1负数最早的使用地区是()。A、德国B、美国C、中国D、法国正确答案:C2最早运用三角形角边角定理进行测量的是()A、德摩根B、泰勒斯C、索菲·热尔曼D、戴德金正确答案:B3下列哪一项定理不是泰勒斯发现的。()A、对顶角相等B、相似三角形对应边成比例。C、圆的直径等分圆D、勾股定理正确答案:D4数学史有助于数学课程内容的安排,可以培养学生的远见卓识。()正确答案:√5几何学的鼻祖是阿基米德。()正确答案:×数学史、数学情感与数学观(三)1斐波那契在《计算之书》中,为表达庞大数字的表达方法来引出()概念。A、数列B、幂C、函数D、对数正确答案:B2《爱丁堡轶事》讲述的是关于数学中()的故事。A、数列B、幂C、函数D、对数正确答案:D3《奇妙的对数说明书》是数学家()的代表作。A、德摩根B、泰勒斯C、纳皮尔D、索菲·热尔曼正确答案:C4阿基米德的墓碑上记录了为表达庞大数字而引出的幂的概念。()正确答案:×5阿基米德测出球的体积和表面积和外切圆柱有2:3的关系。()正确答案:√数学史、数学情感与数学观(四)1数学家()和纳皮尔研究出常用对数的应用法则。A、泰勒斯B、索菲·热尔曼C、戴德金D、布里格斯正确答案:D2《生命最后的旅程》讲述了()将生命时间运用到等差数列上的故事。A、泰勒斯B、棣莫佛C、戴德金D、布里格斯正确答案:B3古代埃及神话故事阐述了数学中的()问题。A、幂B、函数C、分数D、对数正确答案:C4对数的发明让天文学家的生命增加一倍。()正确答案:√5棣莫佛和纳皮尔研究出常用对数的应用法则。()正确答案:×数学史、数学情感与数学观(五)1释迦牟尼的爱情故事阐述了数学中的()问题。A、幂B、函数C、等比数列D、等差数列正确答案:C2“微尘数算法”出自()。A、《周髀算经》B、《数学史》C、《几何原本》D、《佛本行集经》正确答案:D3《无尽的哀鸣》阐述了数学中()问题。A、数列B、勾股定理C、函数D、对数正确答案:B4华里司的墓碑上刻着勾股定理。()正确答案:×5莫里哀·克莱因的爱情故事说明了用字母表示数的意义。()正确答案:√数学史、数学情感与数学观(六)1世界上第一本微积分教材是()。A、《周髀算经》B、《无穷小分析》C、《几何原本》D、《微积溯源》正确答案:B2数学家()解决了零分之零的问题。A、雅各布·伯努利B、洛必达C、约翰·伯努利D、惠根斯正确答案:C3公元17世纪时,世界上懂得微积分的数学家不超过()位。A、2B、3C、4D、5正确答案:D4在学术界中主流观点认为,解析几何的发展历史主要分为三个阶段。()正确答案:√5《无穷小分析》中既包括微分研究,也包括积分研究。()正确答案:×完整版答案请打开微信扫一扫下方二维码,本公众号提供全部300门尔雅课程答案请按照以下步骤获取答案1扫一扫后点击“关注”如下方图示:2点击下方图示链接:或者先点击下方图示菜单栏的“答案”再点击“尔雅答案”:如果没有出现菜单栏,请点击左上方的“←”退出后再次进入即可看见菜单栏,如下方图示:还可以将菜单模式切换为输入模式,然后直接回复“尔雅答案查询”如下方图示:3点击“尔雅答案查询点我!”的图文,如下方图示:4找到你的课程并返回后再回复该课程对应的红色的关键字,我们以尔雅课程“大学生职业生涯规划”为例进行说明,请长按复制图示箭头所示的红色的课程关键字“职业规划”如下方图示:5点击左上方的“×”返回,如下方图示:6点击左下方图示,将菜单模式切换为输入模式,如下图所示:7粘贴或者输入“职业规划”然后点击发送,如下图所示:8如下图所示,点击大学生职业规划的图文,即可看见尔雅课程“大学生职业生涯规划”的答案其他尔雅课程答案请参照以上步骤操作。