DCBAαcabcba//////第二章直线与平面的位置关系2.1空间点、直线、平面之间的位置关系1平面含义:平面是无限延展的2平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。3三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C三点不共线=有且只有一个平面α,使A∈α、B∈α、C∈α。公理2作用:确定一个平面的依据。推论1:一条直线与它外一点确定一个平面。推论2:两条平行直线确定一个平面。推论3:两条相交直线确定一个平面。(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。符号表示为:P∈α∩β=α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据2.1.2空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。2公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4异面直线:①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;②两条异面直线所成的角θ∈(0,];③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。2.1.3—2.1.4空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表aαa∩α=Aa∥α】2.2.1直线与平面平行的判定1、线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:线线平行线面平行2.2.2平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。A·LαC·B·A·αP·αLβ共面直线2aa符号表示:////,//,baPbaba线面平行面面平行2、判断定理的推论:一个平面内的两条相交直线与另个平面内的两条相交直线互相平行,那么这两个平面平行。符号表示:////,//,,.,dbcaBdcAbadcba3、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。2.2.3直线与平面平行的性质1、线面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:babaa////作用:利用该定理可解决直线间的平行问题。2.2.4平面与平面平行的性质2、性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。符号表示:baba////作用:可以由平面与平面平行得出直线与直线平行2.3.1直线与平面垂直的判定1、定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作l⊥α,直线l叫做平面α的垂线,平面α叫做直线l的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。符号表示:mmll,2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。符号表示:注意点:定理中的“两条相交直线”这一条件不可忽视;2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形2、二面角的记法:二面角或3、面面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。符号表示:2.3.3直线与平面垂直的性质1、性质定理:垂直于同一个平面的两条直线平行。符号表示:baba//,2、性质定理:一条直线与一个平行垂直,那么过这条直线的平面也与此平面垂直符号表示:aa,2.3.4平面与平面垂直的性质1、性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。一相交,两垂直acbPcacaba,,ABl//,aaa符号表示:allaa,2、性质定理:垂直于同一平面的直线和平面平行。符号表示:一、异面直线所成的角1.已知两条异面直线,ab,经过空间任意一点O作直线//,//aabb,我们把a与b所成的锐角(或直角)叫异面直线,ab所成的角。2.角的取值范围:090;垂直时,异面直线当ba,900二、直线与平面所成的角1.定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角2.角的取值范围:900。三、两个半平面所成的角即二面角:1、从一条直线出发的两个半平面所组成的图形叫做二面角。这条直线叫做二面角的棱,这两个半平面叫做二面角的面。2、二面角的取值范围:1800两个平面垂直:直二面角。3.求二面角的平面角的常用方法有:(1)定义法:在棱上取一点O,然后在两个平面内分别作过棱上O点的垂线。(2)垂线法(3)垂面法(4)射影面积法第二章点、直线、平面之间的位置关系1、如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.2.在直三棱柱111ABCABC中,13,4,5,4ACBCABAA,点D为AB的中点奎屯王新敞新疆求异面直线1AC与1BC所成角的余弦值奎屯王新敞新疆3.在四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.(1)求证:BC⊥AD;(2)若点D到平面ABC的距离等于3,求二面角A-BC-D的正弦值;(3)设二面角A-BC-D的大小为,猜想为何值时,四面体A-BCD的体积最大.(不要求证明)4、如图,在底面是直角梯形的四棱锥S-ABCD中,AD∥BC,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=21.(1)求四棱锥S—ABCD的体积;(2)求面SCD与面SBA所成的二面角的正切值.5.斜三棱柱的一个侧面的面积为10,这个侧面与它所对棱的距离等于6,求这个棱柱的体积.(提示:在AA1上取一点P,过P作棱柱的截面,使AA1垂直于这个截面.)(第3题)_C_1_B_1_A_1_A_B_C