集合的概念难题汇编(附答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12013年9月犀利哥的高中数学组卷一.选择题(共11小题)1.(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的2.(2007•湖北)设P和Q是两个集合,定义集合P﹣Q={x|x∈P,且x∉Q},如果,Q={x||x﹣2|<1},那么P﹣Q等于()A.{x|0<x<1}B.{x|0<x≤1}C.{x|1≤x<2}D.{x|2≤x<3}3.(2010•延庆县一模)将正偶数集合{2,4,6,…}从小到大按第n组有2n个偶数进行分组如下:则2010位于()A.第7组B.第8组C.第9组D.第10组4.(2009•闸北区一模)设A是整数集的一个非空子集,对于k∈A,如果k﹣1∉A且k+1∉A,那么k是A的一个“孤立元”,给定A={1,2,3,4,5},则A的所有子集中,只有一个“孤立元”的集合共有()A.10个B.11个C.12个D.13个5.用C(A)表示非空集合A中的元素个数,定义A*B=,若A={1,2},B={x||x2+ax+1|=1},且A*B=1,由a的所有可能值构成的集合是S,那么C(S)等于()A.4B.3C.2D.16.(2013•宁波模拟)设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3}是S的子集,且a1,a2,a3满足a1<a2<a3,a3﹣a2≤6,那么满足条件的集合A的个数为()A.78B.76C.84D.837.下列命题正确的有()(1)很小的实数可以构成集合;(2)集合{y|y=x2﹣1}与集合{(x,y)|y=x2﹣1}是同一个集合;(3)这些数组成的集合有5个元素;(4)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限内的点集.A.0个B.1个C.2个D.3个8.若x∈A则∈A,就称A是伙伴关系集合,集合M={﹣1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为()2A.15B.16C.28D.259.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1}.则集合(A⊗B)⊗C的所有元素之和为()A.3B.9C.18D.2710.已知元素为实数的集合A满足条件:若a∈A,则,那么集合A中所有元素的乘积为()A.﹣1B.1C.0D.±111.设集合P={x|x=2k﹣1,k∈Z},集合Q={y|y=2n,n∈Z},若x0∈P,y0∈Q,a=x0+y0,b=x0•y0,则()A.a∈P,b∈QB.a∈Q,b∈PC.a∈P,b∈PD.a∈Q,b∈Q二.填空题(共14小题)12.(2004•虹口区一模)定义集合A,B的一种运算“*”,A*B={p|p=x+y,x∈A,y∈B}.若A={1,2,3},B={1,2},则集合A*B中所有元素的和_________.13.(2011•上海模拟)已知集合,且2∈A,3∉A,则实数a的取值范围是_________.14.集合S={1,2,3,4,5,6},A是S的一个子集,当x∈A时,若x﹣1∉A,x+1∉A,则称x为A的一个“孤立元素”,那么S中无“孤立元素”的4元子集的个数是_________.15.(2006•四川)非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”.现给出下列集合和运算:①G={非负整数},⊕为整数的加法.②G={偶数},⊕为整数的乘法.③G={平面向量},⊕为平面向量的加法.④G={二次三项式},⊕为多项式的加法.⑤G={虚数},⊕为复数的乘法.其中G关于运算⊕为“融洽集”的是_________.(写出所有“融洽集”的序号)16.(2012•安徽模拟)给定集合A,若对于任意a,b∈A,有a+b∈A,则称集合A为闭集合,给出如下五个结论:①集合A={﹣4,﹣2,0,2,4}为闭集合;②正整数集是闭集合;③集合A={n|n=3k,k∈Z}是闭集合;④若集合A1,A2为闭集合,则A1∪A2为闭集合;⑤若集合A1,A2为闭集合,且A1⊆R,A2⊆R,则存在c∈R,使得c∉(A1∪A2).其中正确的结论的序号是_________.17.(2011•绵阳三模)设集合A⊆R,对任意a、b、c∈A,运算“⊕具有如下性质:(1)a⊕b∈A;(2)a⊕a=0;(3)(a⊕b)⊕c=a⊕c+b⊕c+c给出下列命题:①0∈A②若1∈A,则(1⊕1)⊕1=0;③若a∈A,且a⊕0=a,则a=0;④若a、b、c∈A,且a⊕0=a,a⊕b=c⊕b,则a=c.其中正确命题的序号是_________(把你认为正确的命题的序号都填上).318.已知集合A={a1,a2,…,an,n∈N*且n>2},令TA={x|x=ai+aj},ai∈A,aj∈A,1≤i≤j≤n,card(TA)表示集合TA中元素的个数.①若A={2,4,8,16},则card(TA)=_________;②若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),则card(TA)=_________.19.设集合M={1,2,3,4,5,6},S1,S2,…,Sk都是M的含两个元素的子集,且满足:对任意的Si={ai,bi},Sj={aj,bj}(i≠j,i、j∈{1,2,3,…,k}),都有(min{x,y}表示两个数x,y中的较小者),则k的最大值是_________.20.设集合A=,B=,函数f(x)=若x0∈A,且f[f(x0)]∈A,则x0的取值范围是_________.21.(文)设集合A⊆R,如果x0∈R满足:对任意a>0,都存在x∈A,使得0<|x﹣x0|<a,那么称x0为集合A的聚点.则在下列集合中:(1)Z+∪Z﹣(2)R+∪R﹣(3)(4)以0为聚点的集合有_________(写出所有你认为正确结论的序号).22.用描述法表示图中的阴影部分(包括边界)_________.23.设,则A∩B用列举法可表示为_________.24.如果具有下述性质的x都是集合M中的元素,即,其中a,b∈Q.则下列元素:①;②;③;④.其中是集合M的元素是_________.(填序号)25.用列举法表示集合:=_________.三.解答题(共5小题)26.(2007•北京)已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有﹣a∉A,则称集合A具有性质P.4(I)检验集合{0,1,2,3}与{﹣1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;(II)对任何具有性质P的集合A,证明:;(III)判断m和n的大小关系,并证明你的结论.27.对于集合A={x|x=m2﹣n2,m∈Z,n∈Z},因为16=52﹣32,所以16∈A,研究下列问题:(1)1,2,3,4,5,6六个数中,哪些属于A,哪些不属于A,为什么?(2)讨论集合B={2,4,6,8,…,2n,…}中有哪些元素属于A,试给出一个一般的结论,不必证明.28.已知集合A={x|x=m+n,m,n∈Z}.(1)设x1=,x2=,x3=(1﹣3)2,试判断x1,x2,x3与集合A之间的关系;(2)任取x1,x2∈A,试判断x1+x2,x1•x2与A之间的关系.29.已知集合A的全体元素为实数,且满足若a∈A,则∈A.(1)若a=2,求出A中的所有元素;(2)0是否为A中的元素?请再举例一个实数,求出A中的所有元素;(3)根据(1)、(2),你能得出什么结论?30.设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10﹣x∈S.(1)请你写出符合条件,且分别含有一个、二个、三个元素的集合S各一个;(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;若不存在,请说明理由;(3)由(1)、(2)的解答过程启发我们,可以得出哪些关于集合S的一般性结论(要求至少写出两个结论)?52013年9月犀利哥的高中数学组卷参考答案与试题解析一.选择题(共11小题)1.(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的考点:元素与集合关系的判断.715936专题:压轴题;阅读型;新定义.分析:本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行分析排除即可.解答:解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C;若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D;从而可得T,V中至少有一个关于乘法是封闭的,A正确故选A.点评:此题考查学生理解新定义的能力,会判断元素与集合的关系,是一道比较难的题型.2.(2007•湖北)设P和Q是两个集合,定义集合P﹣Q={x|x∈P,且x∉Q},如果,Q={x||x﹣2|<1},那么P﹣Q等于()A.{x|0<x<1}B.{x|0<x≤1}C.{x|1≤x<2}D.{x|2≤x<3}考点:元素与集合关系的判断;绝对值不等式的解法.715936专题:计算题.分析:首先分别对P,Q两个集合进行化简,然后按照P﹣Q={x|x∈P,且x∉Q},求出P﹣Q即可.解答:解:∵化简得:P={x|0<x<2}而Q={x||x﹣2|<1}化简得:Q={x|1<x<3}∵定义集合P﹣Q={x|x∈P,且x∉Q},∴P﹣Q={x|0<x≤1}故选B点评:本题考查元素与集合关系的判断,以及绝对值不等式的解法,考查对集合知识的熟练掌握,属于基础题.3.(2010•延庆县一模)将正偶数集合{2,4,6,…}从小到大按第n组有2n个偶数进行分组如下:则2010位于()A.第7组B.第8组C.第9组D.第10组6考点:元素与集合关系的判断;集合的表示法;等差数列;等比数列.715936专题:计算题.分析:首先将正偶数集合按大小顺序排列是一个等差数列,先求出2010是此数列中的第几项,然后按第n组有2n个偶数进行分组,每组中集合元素的个数正好是等比数列,求出解答:解:正偶数集按从小到大的顺序排列组成数列2,4,6…2n2n=2010,n=1005由第一组{2,4}的元素是2个第二组{6,8,10,12}的元素是4个第三组{14,16,18,20,22,24,26,28}的元素是8个…第m组的元素是2n个2+4+8+…+2n==2m+1﹣22m+1﹣2<1005,解得2m<503.5m∈z,28=256,29=512,256<503.5<512所以,m=9,故选C.点评:此题表面是一个集合题,实际上考查等差数列的通项公式和等比数列求和公式,但过程中一定要思路清晰,否则容易出错.4.(2009•闸北区一模)设A是整数集的一个非空子集,对于k∈A,如果k﹣1∉A且k+1∉A,那么k是A的一个“孤立元”,给定A={1,2,3,4,5},则A的所有子集中,只有一个“孤立元”的集合共有()A.10个B.11个C.12个D.13个考点:元素与集合关系的判断.715

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功