高职单招数学知识点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共35页高中数学第一章-集合榆林教学资源网考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:榆林教学资源网(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01.集集合合与与简简易易逻逻辑辑知知识识要要点点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为AA;②空集是任何集合的子集,记为A;③空集是任何非空集合的真子集;如果BA,同时AB,那么A=B.如果CACBBA,那么,.[注]:①Z={整数}(√)Z={全体整数}(×)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N;A=N,则CsA={0})③空集的补集是全集.第2页共35页3.①{(x,y)|xy=0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R}一、三象限的点集.[注]:①对方程组解的集合应是点集.例:1323yxyx解的集合{(2,1)}.②点集与数集的交集是.(例:A={(x,y)|y=x+1}B={y|y=x2+1}则A∩B=)4.①n个元素的子集有2n个.②n个元素的真子集有2n-1个.③n个元素的非空真子集有2n-2个.5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例:①若325baba或,则应是真命题.解:逆否:a=2且b=3,则a+b=5,成立,所以此命题为真.②,且21yx3yx.解:逆否:x+y=3x=1或y=2.21yx且3yx,故3yx是21yx且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若255xxx或,.4.集合运算:交、并、补.{|,}{|}{,}ABxxAxBABxxAxBAxUxAU交:且并:或补:且C5.主要性质和运算律(1)包含关系:(2)等价关系:UABABAABBABUC(3)集合的运算律:交换律:.;ABBAABBA结合律:)()();()(CBACBACBACBA(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法特例①一元一次不等式axb解的讨论;②一元二次不等式ax2+box0(a0)解的讨论.000第3页共35页原命题若p则q否命题若┐p则┐q逆命题若q则p逆否命题若┐q则┐p互为逆否互逆否互为逆否互互逆否互二次函数cbxaxy2(0a)的图象一元二次方程的根002acbxax有两相异实根)(,2121xxxx有两相等实根abxx221无实根的解集)0(02acbxax21xxxxx或abxx2R的解集)0(02acbxax21xxxx2.分式不等式的解法(1)标准化:移项通分化为)()(xgxf0(或)()(xgxf0);)()(xgxf≥0(或)()(xgxf≤0)的形式,(2)转化为整式不等式(组)0)(0)()(0)()(;0)()(0)()(xgxgxfxgxfxgxfxgxf3.含绝对值不等式的解法(1)公式法:cbax,与)0(ccbax型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布一元二次方程ax2+bx+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。构成复合命题的形式:p或q(记作“p∨q”);p且q(记作“p∧q”);非p(记作“┑q”)。3、“或”、“且”、“非”的真值判断(1)“非p”形式复合命题的真假与F的真假相反;第4页共35页(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P则q;逆命题:若q则p;否命题:若┑P则┑q;逆否命题:若┑q则┑p。(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)①、原命题为真,它的逆命题不一定为真。②、原命题为真,它的否命题不一定为真。③、原命题为真,它的逆否命题一定为真。6、如果已知pq那么我们说,p是q的充分条件,q是p的必要条件。若pq且qp,则称p是q的充要条件,记为p⇔q.7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。高中数学第二章-函数考试内容:映射、函数、函数的单调性、奇偶性.指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数.函数的应用.考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.§02.函函数数知知识识要要点点知识回顾:(一)映射与函数1.映射与一一映射2.函数函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数第5页共35页才是同一函数.(二)函数的性质⒈函数的单调性定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2,⑴若当x1x2时,都有f(x1)f(x2),则说f(x)在这个区间上是增函数;⑵若当x1x2时,都有f(x1)f(x2),则说f(x)在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.2.函数的奇偶性正确理解奇、偶函数的定义。必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数)(xf为奇函数或偶函数的必要不充分条件;(2))()(xfxf或)()(xfxf是定义域上的恒等式。2.奇函数的图象关于原点成中心对称图形,偶函数的图象关于y轴成轴对称图形。反之亦真,因此,也可以利用函数图象的对称性去判断函数的奇偶性。3.奇函数在对称区间同增同减;偶函数在对称区间增减性相反.4.如果)(xf是偶函数,则|)(|)(xfxf,反之亦成立。若奇函数在0x时有意义,则0)0(f。7.奇函数,偶函数:⑴偶函数:)()(xfxf设(ba,)为偶函数上一点,则(ba,)也是图象上一点.偶函数的判定:两个条件同时满足①定义域一定要关于y轴对称,例如:12xy在)1,1[上不是偶函数.②满足)()(xfxf,或0)()(xfxf,若0)(xf时,1)()(xfxf.⑵奇函数:)()(xfxf设(ba,)为奇函数上一点,则(ba,)也是图象上一点.奇函数的判定:两个条件同时满足①定义域一定要关于原点对称,例如:3xy在)1,1[上不是奇函数.②满足)()(xfxf,或0)()(xfxf,若0)(xf时,1)()(xfxf.8判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:在进行讨论.9.⑴熟悉常用函数图象:22122212122222121)()()(bxbxxxxxbxbxxfxfx)(第6页共35页▲xy例:||2xy→||x关于y轴对称.|2|21xy→||21xy→|2|21xy▲xy▲xy(0,1)▲xy(-2,1)|122|2xxy→||y关于x轴对称.⑵熟悉分式图象:例:372312xxxy定义域},3|{Rxxx,值域},2|{Ryyy→值域x前的系数之比.(三)指数函数与对数函数指数函数)10(aaayx且的图象和性质a10a1图象4.543.532.521.510.5-0.5-1-4-3-2-11234y=14.543.532.521.510.5-0.5-1-4-3-2-11234y=1性质(1)定义域:R(2)值域:(0,+∞)(3)过定点(0,1),即x=0时,y=1(4)x0时,y1;x0时,0y1(4)x0时,0y1;x0时,y1.(5)在R上是增函数(5)在R上是减函数对数函数y=logax的图象和性质:对数运算:▲xy23第7页共35页(四)方法总结⑴.相同函数的判定方法:定义域相同且对应法则相同.⑴对数运算:nanaaacbabbaNanaanaaaaaaaaaaaacbaNNNaMnMMnMNMNMNMNMna1121loglog...loglog1logloglogloglogloglog1loglogloglogloglogloglog)(log32log)12)1(推论:换底公式:(以上10且...aa,a1,c0,c1,b0,b1,a0,a0,N0,Mn21)图象y=logaxOyxa1a1x=1性质(1)定义域:(0,+∞)(2)值域:R(3)过点(1,0),即当x=1时,y=0(4))1,0(x时0y),1(x时y0)1,0(x时0y),1(x时0y(5)在(0,+∞)上是增函数在(0,+∞)上是减函数第8页共35页注⑴:当0,ba时,)log()log()log(baba.⑵:当0M时,取“+”,当n是偶数时且0M时,0nM,而0M,故取“—”.例如:xxxaaalog2(log2log2中x>0而2logxa中x∈R).⑵xay(1,0aa)与xyalog互为反函数.当1a时,xyalog的a值越大,越靠近x轴;当10a时,则相反.⑵.函数表达式的求法:①定义法;②换元法;③待定系数法.⑶.反函数的求法:先解x,互换x、y,注明反函数的定义域(即原函数的值域).⑷.函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功