1第五讲:绳上的‘死结’和‘活结’杆中的“活杆”与“死杆”模型一、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种.1.“活结”“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.2.“死结”“死结”可理解为把绳子分成两段,且不可沿绳子移动的结点。“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。死结的特点:1.绳子的结点不可随绳移动2.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等【典例1】如图所示,将一细绳的两端固定于两竖直墙的A、B两点,通过一个光滑的挂钩将某重物挂在绳上,下面给出的四幅图中有可能使物体处于平衡状态的是()【典例2】如图所示,一轻绳的两端分别固定在不等高的A、B两点,现用另一轻绳将一物体系于O点,设轻绳AO、BO相互垂直,αβ,且两绳中的拉力分别为FA、FB,物体受到的重力为G,下列表述正确的是()A.FA一定大于GB.FA一定大于FBC.FA一定小于FBD.FA与FB大小之和一定等于G2第2题图第3题图【典例3】如图所示,在水平天花板的A点处固定一根轻杆a,杆与天花板保持垂直.杆的下端有一个轻滑轮O.另一根细线上端固定在该天花板的B点处,细线跨过滑轮O,下端系一个重为G的物体,BO段细线与天花板的夹角为θ=30°.系统保持静止,不计一切摩擦.下列说法中正确的是()A.细线BO对天花板的拉力大小是2GB.a杆对滑轮的作用力大小是2GC.a杆和细线对滑轮的合力大小是GD.a杆对滑轮的作用力大小是G【典例4】如图所示,长为5m的细绳的两端分别系于竖立在地面上的相距为4m的两杆的顶端A、B,绳上挂一个光滑的轻质挂钩,其下连着一个重为12N的物体,平衡时绳中的张力FT为多大?当A点向上移动少许,重新平衡后,绳与水平面夹角、绳中张力如何变化?.【典例5】如图所示,AO、BO和CO三根绳子能承受的最大拉力相等,O为结点,OB与竖直方向夹角为θ,悬挂物质量为m。求:①OA、OB、OC三根绳子拉力的大小。②A点向上移动少许,重新平衡后,绳中张力如何变化?3二、“活杆”与“死杆”轻杆是物体间连接的另一种方式,根据轻杆与墙壁连接方式的不同,可以分为“活动杆”与“固定杆”.所谓“活动杆”,就是用铰链将轻杆与墙壁连接,其特点是杆上的弹力方向一定沿着杆的方向;而“固定杆”就是将轻杆固定在墙壁上(不能转动),此时轻杆上的弹力方向不一定沿着杆的方向。【典例1】甲、乙两图中的杆都保持静止,试画出甲、乙两图O点受杆的作用力的方向.(O为结点)第一题图第二题图【典例2】如图所示,水平横梁一端A插在墙壁内,另一端装有小滑轮B,一轻绳一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量为m=10kg的重物,∠CBA=30°,(g取10N/kg)不计定滑摩擦和绳子的质量,这时,定滑轮作用于绳子的力等于()A.50NB.503NC.100ND.1003N【典例3】如图(a)所示,轻绳AD跨过固定的水平横梁BC右端的定滑轮挂住一个质量为M1的物体,∠ACB=30°;图5(b)中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量为M2的物体,求:(1)轻绳AC段的张力FTAC与细绳EG的张力FTEG之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.拓展:(1)绳AC、CD上的拉力大小相同吗?绳EG、GF上的拉力大小相同吗?(2)杆BC、HG的弹力方向是否沿杆?为什么?