量子纠缠纯化新进展盛宇波通信与信息工程学院信号处理与传输研究院Outline1.Motivation2.HistoryofEntanglementPurification3.4.SummaryEntanglementpurification一纠缠纯化背景量子通信的分支:1量子密钥分发(QKD)2量子密集编码(QDC)3量子安全直接通信(QSDC)4其他由于纠缠只能通过局域产生,然后通过信道发送粒子的方式来共享。这样,就纠缠粒子和环境的相互作用就不可避免。本来处于最大纠缠态的粒子就会发生退相干,这种退相干通常有两种方式:(1)由纯的最大纠缠态变成混合态。(2)由最大纠缠态变成部分纠缠态。纠缠纯化纠缠浓缩基本物理模型:纠缠纯化方案的分类:1渐进式纠缠纯化2确定性纠缠纯化(1)Bennett等人的第一个基于CNOT门的纠缠纯化方案渐进式纠缠纯化(1):CharlesH.Bennett.(美国科学院院士、量子密码创始人)etalPRL76,722(1996):,:,:xyz和双向CNOT作用的真值表Bennett等人的纯化方案的缺点:(1)基于CNOT门,实验上不好实现;(2)步骤复杂,每次纯化都要经过双边旋转恢复到Werner态;(3)纯化效率不高,资源浪费严重。改进的CNOT门纯化方案:Deutsch(量子计算创始人之一,量子图灵机概念提出者,著名Deutsch算法提出者)PRL772818(1996)渐进的纠缠纯化(2)JWPanetalNature4101067(2001)比特翻转错误用PBS替代了CNOT门三模事件(交叉项)去除交叉项之后:四个空间模式出射两个空间模式出射无法利用!效率减半!四个空间模式出射两个空间模式出射无法利用!效率减半!F2(1-F)2选择四个空间模式都有光子:222(1)FFFFX基矢下探测:222(1)(1)FFFFFF和CNOT门纠缠纯化方案的比较:1PBS在这里也实现了CNOT的作用。2PBS方案在实验上实现简单。3PBS方案效率只有CNOT方案的一半。不足:(1)基于理想源,而现实中实现的是PDC源。(2)需要单光子探测器。(3)效率比较低。渐进的纠缠纯化(3)1利用cross-Kerrnonlinearity基于PDC源的纯化方案cross-Kerrnonlinearity基本原理:K.NemotoandW.JMunroPRL93250202(2004)经过QND后:cross-Kerrnonlinearity构造paritycheck原理(QND)Yu-BoSheng,Fu-GuoDeng,Hong-YuZhou,PRA77,042308(2008)Cite:155没有发生比特翻转错误:一对光子发生比特错误:两边相移不同!替代了PBSPDC源产生两对光子没有出错:一对光子发生比特翻转错误:两对光子发生比特翻转错误:保真度:p1:PDC源产生一对光子概率p2:PDC源同时产生两对光子概率F0:初态保真度(1)可以用于目前实际的PDC源,也可以用于理想源(2)是目前唯一实验上可以循环调用的方案(3)不需要复杂的单光子探测技术(4)与PBS纯化方案相比,效率翻倍,是目前实验方案中效率最高的方案特点:Bit翻转错误:以三个粒子的GHZ态为例:选择偶宇称:推广到多粒子系统:Y.B.Sheng,F.G.Deng,H.Y.ZhouEur.PhysJ.D55,235–242(2009)相位翻转错误推广到N个粒子的情况:Paritycheck后选择相同的相位移动:确定的纠缠纯化(1)单对光子:两对光子:C.SimonandJian-WeiPanPRL89257901(2002)PDC源发出单对光子:如果没有发生比特翻转错误:如果其中一个粒子发生比特翻转错误:同时从上下模式出射一个光子从上模式出射,而另一个从下模式出射根据空间模式不同,可以完全纠正比特翻转错误!相位错误无法纠正!超纠缠确定的纠缠纯化(2)超纠缠态:122111221()()()22HHVVababpfs12211221112211221()()21()()2fsababababPABABABABABCD总的密度矩阵频率部分空间部分受噪声后的极化纠缠态Y.B.Sheng,F.G.DengPRA032307(2010)Cite1301122222211111122212211121(,21()0,021(),021()0,2ababaaaaababaaaaHHVVabHHVVabHVVHabHVVHab比特翻转错误纯化后:()()PABABACBDHadamard操作后:可以通过频率上转换将频率抹平,得到标准形式的最大纠缠态特点:(1)以确定的方式得到了保真度为1的最大纠缠态,这是以前所有方案中没有的;(2)没有光子损耗,与传统纯化方式相比,节省大量资源;(3)在实验上面不需要单光子探测;(4)我们证明我们的纯化可以用非局域下的贝尔态分析。单对光子:两对光子:Yu-BoSheng,Fu-GuoDeng,Phys.Rev.A.82,044305(2010)Cite:86pP2P确定的纠缠纯化(3)单对光子:pOutputmodesBellstatesD2D7D5D4D2D4D5D712BAABHHVV12BAABHVVH利用CNOT门循环纯化(Bennettetal,PRL1996)改进的CNOT门循环纯化(Deustchetal,PRL1996)利用线性光学元件PBS实现纯化(Panetal,Nature2001,Nature2003)利用cross-Kerr介质实现循环纯化(Shengetal,PRA2008)利用超纠缠实现两步确定纯化(Shengetal,PRA2010)利用线性光学元件PBS实现一步确定的纯化(Shengetal,PRA2010)当前实验条件下可实现!利用空间纠缠实现极化纠缠纯化(SimonandPan,PRL2002)纠缠纯化新进展(1)Cite19HybridEntanglementisusefulinQuantumrepeaters!Purification:Y.B.Sheng,L.Zhou,andG.L.Long,Phys.Rev.A88,022302(2013)比特翻转错误:可以增强相干态!相位翻转错误:转化成比特翻转错误!相干态损耗错误:通过数学变换,相干态损耗错误可等价于另一组基下的比特翻转错误!多光子多相干态的纯化纠缠纯化新进展(2)PRL111,020502(2013)Singleserver:Theclienthastohavesomeminimunquantumpower,suchastheabilityofemittingrandomlyrotatedsingle-qubitstates,ortheabilityofmeasuringstates.TwoServer:(theyshareBellstates,butcannotcommunicatewitheachother)Theclientcanbecompletelyclassical.CleanBellstatepairsisnecessary.Theyneedtheentanglementdistillation.BFKblindprotocol[1]Double-serverblindprotocol特点:1theyrequirenpairsofdegradedmixedstates.Afterrepeatingtheirprotocolformanyrounds,theycanfinallyobtainaboutpairsofmaximallyentangledstates.2Theyalsoexploitthecontrolled-notgatetocompletethetask,whichisnotexperimentallyfeasibleincurrenttechnology.3Moreover,theyrequiretheinitialfidelityofthemixedstatetobegreaterthan81%.OurprotocolY.B.Sheng,andL.Zhou,ScientificReports15,7815(2015)初始状态:退相干:没有出错:两边相位移动一样!出错:两边相位移动不一样!优点:1First,wecanobtainthedeterministicmaximallyentangledstatewiththesuccessprobabilityof100%inprinciple.2Second,fromourdescription,theinitialfidelityFofthemixedstatecanbearbitrarynumber,andweevendonotrequiretheinitialmixedstateofthepolarizationparttobeentangled.3Third,foreachpairofdegradedmixedstate,thedistillationprocedureisrequiredtoperformforonlyonestep.Itgreatlyreducesthepracticaloperationsforeachparty.4Forth,Aliceessentiallydoesnotneedtoparticipateinthedistillation,butobtainstheresultstojudgetheexactinformationofthemaximallyentangledstate,whileinRef.12,Aliceshouldrandomlychoosea2nbitstrings1andsendsittotwoBobs.Ourprotocolissimplerthanthepreviousone.