CIS以及CIGS太阳能电池板

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

CIS以及CIGS太阳电池一、铜铟镓硒太阳电池概况二、铜铟镓硒材料特性三、CIGS薄膜太阳能电池的结构四、CIGS薄膜制备技术五、CIGS太阳电池模组六、CIGS电池未来发展一、铜铟镓硒太阳电池概况两类:铜铟硒三元化合物,CopperIndiumDiselenide,CIS,铜铟镓硒四元化合物,CopperIndiumGalliumDiselenide,CIGS。CIS,CIGS电池吸光范围广,户外环境稳定性好,材料成本低,转化效率高,又一具有发展潜力的薄膜电池。标准环境测试,转换效率20%,聚光系统30%,柔性大面积塑料基板15%。CIGS具有较好的抗辐射性,具有太空应用的潜力。CIS起源1970年贝尔实验室:P-CIS晶片沉积n-CdS,12%CIS电池特点CIS太阳电池有转换效率高、制造成本低、电池性能稳定三大突出的特点。转换效率高CIS薄膜的禁带宽度为1.04eV,通过掺入适量的Ga以替代部分In,成为CuIn1-xGaxSe2(简称CIGS)混溶晶体,薄膜的禁带宽度可在1.04~1.7eV范围内调整,这就为太阳电池最佳带隙的优化提供了新的途径。所以,CIS(CIGS)是高效薄膜太阳电池的最有前途的光伏材料。美国NREL使用三步沉积法制作的CIGS太阳能电池的最高转换效率为20.5%,是薄膜太阳电池的世界纪录。制造成本低吸收层薄膜CuInSe2是一种直接带隙材料,光吸收率高达105量级,最适于太阳电池薄膜化,电池厚度可以做到2~3微米,降低了昂贵的材料消耗。CIS电池年产1.5MW,其成本是晶体硅太阳电池的1/2~1/3,能量偿还时间在一年之内,远远低于晶体硅太阳电池。电池性能稳定美国波音航空公司曾经制备91cm2的CIS组件,转换效率为6.5%。100MW/cm2光照7900h后发现电池效率没有任何衰减,西门子公司制备的CIS电池组件在美国国家可再生能源实验室(NREL)室外测试设备上,经受7年的考验仍然显示着原有的性能。二、铜铟镓硒材料特性CuInSe2及CuGaSe2室温下具有黄铜矿的正方晶系结构,晶格常数比c/a=2;800℃高温出现立方结构(闪锌矿,ZnS)。CIS相图:位于Cu2Se和In2Se3CIS为Cu2Se和In2Se3固溶体,相图位置狭窄,薄膜成长温度500℃以上单一相获得:精确浓度控制。CIS可与CuGaSe2任意比例混合形成CuIn1-xGaxSe2CuIn1-xGaxSe2容许较宽成分变化,但光电特性改变不明显。CuIn1-xGaxSe2电池可在Cu/(In+Ga)=0.7-1比例制造。CIS吸光系数较高(105/cm),1微米材料可吸收99%太阳光CIS直接能隙半导体,1.02eV,-2X10-4eV/KCuIn1-xGaxSe2能隙计算:Eg=1.02+0.626x-0.167(1-x)电性:富铜CIS具有P型特征富铟CIS可P或N型特征高压硒环境下热处理,P型特征变为N性特征;低压硒热处理,N型变P型In性质铟(49)是银白色并略带淡蓝色的金属,熔点156.61℃,沸点2080℃,密度7.3克/厘米3(20℃)。很软,能用指甲刻痕,比铅的硬度还低。铟的可塑性强,有延展性易溶于酸或碱;不能分解于水;在空气中很稳定铟在地壳中的分布量比较小,又很分散,稀有金属。电子计算机(InSb),电子,光电,国防军事,航空航天,核工业,现代信息技术Se性质Se(34)一种非金属,可以用作光敏材料、电解锰行业催化剂、动物体必需的营养元素和植物有益的营养元素等。光敏材料:油漆、搪瓷、玻璃和墨水中的颜色、塑料。光电池、整流器、光学仪器、光度计等。硒在电子工业中可用作光电管,在电视和无线电传真等方面也使用硒。硒能使玻璃着色或脱色,高质量的信号用透镜玻璃中含2%硒,含硒的平板玻璃用作太阳能的热传输板和激光器窗口红外过滤器。Ga性质镓(31)是银白色金属。密度5.904克/厘米3,熔点29.78℃,沸点2403℃在空气中表现稳定。加热可溶于酸和碱;与沸水反应剧烈,但在室温时仅与水略有反应。高温时能与大多数金属作用镓用来制作光学玻璃、真空管、半导体的原料高纯镓电子工业和通讯领域,是制取各种镓化合物半导体的原料,硅、锗半导体的掺杂剂,核反应堆的热交换介质CIGS的晶体结构CuInSe2黄铜矿晶格结构CuInSe2复式晶格:a=0.577,c=1.154直接带隙半导体,其光吸收系数高达105量级禁带宽度在室温时是1.04eV,电子迁移率和空穴迁移率分3.2X102(cm2/V·s)和1X10(cm2/V·s)通过掺入适量的Ga以替代部分In,形成CulnSe2和CuGaSe2的固熔晶体Ga的掺入会改变晶体的晶格常数,改变了原子之间的作用力,最终实现了材料禁带宽度的改变,在1.04一1.7eV范围内可以根据设计调整,以达到最高的转化效率自室温至810℃保持稳定相,使制膜工艺简单,可操作性强.CIGS的电学性质及主要缺陷富Cu薄膜始终是p型,而富In薄膜则既可能为p型,也可能为n型。n型材料在较高Se蒸气压下退火变为p型传导;相反,p型材料在较低Se蒸气压下退火则变为n型CIS中存在上述的本征缺陷,影响薄膜的电学性质.Ga的掺入影响很小.CIGS的光学性质及带隙CIS材料是直接带隙材料,电子亲和势为4.58eV,300K时Eg=1.04eV,其带隙对温度的变化不敏感,具有高达6xl05cm-1的吸收系数.黄铜矿系合金Cu(In,Ga,Al)Se2,其带隙在1.02eV-2.7eV范围变化,覆盖了可见太阳光谱In/Ga比的调整可使CIGS材料的带隙范围覆盖1.0一l.7eV,CIGS其带隙值随Ga含量x变化满足下列公式其中,b值的大小为0.15一0.24eVCIGS的性能不是Ga越多性能越好的,因为短路电流是随着Ga的增加对长波的吸收减小而减小的。当x=Ga/(Ga+In)0.3时,随着x的增加,Eg增加,Voc也增加;x=0.3时带隙为1.2eV;当x0.3eV时,随着x的增加,Eg增大,Jsc减小。G.Hanna等也认为x=0.28时材料缺陷最少,电池性能最好。三、CIGS薄膜太阳能电池的结构金属栅电极减反射膜(MgF2)窗口层ZnO过渡层CdS光吸收层CIGS金属背电极Mo玻璃衬底低阻AZO高阻ZnO金属栅电极减反射膜(MgF2)金属栅电极减反射膜(MgF2)金属栅电极窗口层ZnO减反射膜(MgF2)金属栅电极窗口层ZnO减反射膜(MgF2)金属栅电极过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极光吸收层CIGS过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极光吸收层CIGS光吸收层CIGS过渡层CdS光吸收层CIGS过渡层CdS光吸收层CIGS窗口层ZnO过渡层CdS光吸收层CIGS金属栅电极减反射膜(MgF2)金属栅电极减反射膜(MgF2)金属栅电极窗口层ZnO减反射膜(MgF2)金属栅电极金属栅电极减反射膜(MgF2)金属栅电极减反射膜(MgF2)金属栅电极窗口层ZnO减反射膜(MgF2)金属栅电极金属栅电极减反射膜(MgF2)金属栅电极减反射膜(MgF2)金属栅电极窗口层ZnO减反射膜(MgF2)金属栅电极窗口层ZnO减反射膜(MgF2)金属栅电极过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极光吸收层CIGS过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极光吸收层CIGS过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极金属背电极Mo光吸收层CIGS过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极窗口层ZnO减反射膜(MgF2)金属栅电极过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极光吸收层CIGS过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极金属背电极Mo光吸收层CIGS过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极金属背电极Mo光吸收层CIGS过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极玻璃衬底金属背电极Mo光吸收层CIGS过渡层CdS窗口层ZnO减反射膜(MgF2)金属栅电极从光入射层开始,各层分别为:结构原理减反射膜:增加入射率AZO:低阻,高透,欧姆接触i-ZnO:高阻,与CdS构成n区CdS:降低带隙的不连续性,缓冲晶格不匹配问题CIGS:吸收区,弱p型,其空间电荷区为主要工作区Mo:CIS的晶格失配较小且热膨胀系数与CIS比较接近CIS,CIGS制造技术众多,但结构相似:Cu(InGa)Se2/CdS,钼(Mo)基板最早是用n型半导体CdS作窗口层,其禁带宽度为2.42ev,一般通过掺入少量的ZnS,成为CdZnS材料,主要目的是增加带隙。近年来的研究发现,窗口层改用ZnO效果更好,ZnO带宽可达到3.3eV,CdS的厚度降到只有约50nm,只作为过渡层。吸收层CIGS(化学式CuInGase)是薄膜电池的核心材料,属于正方晶系黄铜矿结构。作为直接带隙半导体,其光吸收系数高达105量级(几种薄膜太阳能材料中较高的)。禁带宽度在室温时是1.04eV,电子迁移率和空穴迁移率很高。CIGS太阳电池结构结构:玻璃基板,钼,CIGS,CdS,ZnOCIGS:晶粒大小与制造技术有关,~1微米CIGS缺陷:位错,孪晶等CIGS太阳电池结构CIGS太阳电池结构—玻璃基板设计要求:玻璃热涨系数与CIGS匹配硼硅酸盐玻璃:热胀系数小,CIGS薄膜受拉应力,孔洞或裂缝聚酰亚胺玻璃:热胀系数大,薄膜压应力,结合差钠玻璃:热胀系数匹配钠玻璃:钠扩散进薄膜,有助于产生较大晶粒及合适的晶向(112)商业上,氧化物(SiOx,Al2O3)控制钠含量,然后Mo上生长钠层不锈钢或塑料用作基板:可塑性,轻巧性CIGS太阳电池结构—钼背面电极Mo与CIGS形成良好欧姆接触Mo较好的反光性能Mo采用直流溅镀法沉积在基板上沉积过程中薄膜应力控制薄膜厚度由电池设计电阻决定沉积接面MoSe2控制:低压下沉积致密MoCIGS太阳电池结构—吸收层吸收层:p-CIGS,CIS吸收层厚度:1.5-2微米In、Ga含量改变,CIGS能隙宽度:1.02-1.68In-richCIGS:表面空孔”黄铜矿“覆盖,改善电池效率;而Copper-rich区域:Cu2-xSe析出,破坏电池功能。采用氰化钠或氰化钾溶液把Cu2-xSe从薄膜表面或晶界移出设计考量:CIGS薄膜技术:单一相,结晶品质好吸收层与金属有良好的欧姆接触,易制造CIGS足够的厚度,且厚度小于载子扩散长度CIGS为多晶结构,故要求缺陷少,降低再结合几率CIGS表面平整性好,促进良好接面状态CIGS太阳电池结构—缓冲层缓冲层:CdS(与p-CIGS形成p-n结)CdS直接能隙结构,2.4eVCdS与CIGS晶格匹配性好,随CIGS内Ga增加,匹配性变差CdS制造:化学水域法(chemicalbathdeposition,CBD)将CIGS浸入60-80化学溶液中溶液成分:氯化盐(CdCl2,CdSO4等)、氨水(NH3)、硫脲(SC(NH2)2)方程式:23422232()()242CdNHSCNHOHCdSHHCNNHHOCIGS太阳电池结构—缓冲层水溶液对CIGS表面进行腐蚀清洗去除氧化层,特别是氨水氧化层去除,促进CdS薄膜生长研究发现:CdS-ZnS合金薄膜,能提高能隙宽度,提升电池转化效率。镉毒性解决办法:替代材料:ZnS,ZnSe,InxSey,In2S3等去掉CdS层,ZnOTCO直接做在CIGS上CIGS太阳电池结构—TCOTCO材料:,SnO2,In2O3:Sn(ITO),ZnOSnO2高温制备技术,限制了作为TCO应用In2O3:S

1 / 37
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功