【任一个有理数a的绝值】用式子表示就是:(1)当a是正数(即a0)时,∣a∣=;(2)当a是负数(即a0)时,∣a∣=;(3)当a=0时,∣a∣=.绝对值的非负性:任意有理数a,有∣a∣≥O一、【正负数】有理数的分类:★☆▲_____________统称整数,试举例说明。_____________统称分数,试举例说明。____________统称有理数。[基础练习]1☆把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7·正整数集{…};·正有理数集{…};·负有理数集{…}·负整数集{…};·自然数集{…};·正分数集{…}·负分数集{…}2☆某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是;如果这种油的原价是76元,那么现在的卖价是。二、【数轴】规定了、、的直线,叫数轴[基础练习]1☆如图所示的图形为四位同学画的数轴,其中正确的是()2☆在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“”号连接起来。4,-|-2|,-4.5,1,03下列语句中正确的是()A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来4、★①比-3大的负整数是_______;②已知m是整数且-4m3,则m为_______________。③有理数中,最大的负整数是,最小的正整数是。最大的非正数是。④与原点的距离为三个单位的点有__个,他们分别表示的有理数是_和__。5、★★在数轴上点A表示-4,如果把原点O向负方向移动1个单位,那么在新数轴上点A表示的数是()A.-5,B.-4C.-3D.-2三、【相反数】的概念像2和-2、-5和5、2.5和-2.5这样,只有不同的两个数叫做互为相反数。0的相反数是。一般地:若a为任一有理数,则a的相反数为-a相反数的相关性质:1、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。2、互为相反数的两个数,和为0。[基础练习]1☆-5的相反数是;-(-8)的相反数是;-[+(-6)]=0的相反数是;a的相反数是;21的相反数的倒数是__2☆若a和b是互为相反数,则a+b=()A.–2aB.2bC.0D.任意有理数3★(1)如果a=-13,那么-a=______;(2)如果-a=-5.4,那么a=______;(3)如果-x=-6,那么x=______;(4)-x=9,那么x=______.4★★已知a、b都是有理数,且|a|=a,|b|=-b、,则ab是()A.负数;B.正数;C.负数或零;D.非负数四、【绝对值】一般地,数轴上表示数a的点与原点的叫做数a的绝对值,记作∣a∣.一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是.[基础练习]1☆—2的绝对值表示它离开原点的距离是个单位,记作.2☆|-8|=。-|-5|=。绝对值等于4的数是____。3☆绝对值等于其相反数的数一定是()A.负数B.正数C.负数或零D.正数或零4★7x,则______x;7x,则______x5★如果aa22,则a的取值范围是()A.a>OB.a≥OC.a≤OD.a<O.6★★如果3a,则______3a,______3a.7★★绝对值不大于11的整数有()A.11个B.12个C.22个D.23个五、【有理数的运算】·有理数加减法法则课本P-18--22页··有理数乘除法法则课本P-29--34页··求几个相同因数的积的运算,叫做有理数的乘方。即:aaaan(有n个a)有理数第一章有理数知识点归纳及典型例题实验中学马贵荣编有理数·有理数乘除法法则·同号得,异号得,再把绝对值相乘(除)。·“奇负偶正”的应用·1、如下符号的化简(指负号的个数与结果符号的关系),如:-{+[-(-2)]}=-22、连乘式的积(指负因数的个数与结果符号的关系),如:(-1)×(-2)×(-3)×(+4)=-24(-1)×(-2)×(-3)×(-4)=243、负数的乘方(指乘方的指数与结果符号的关系),如:(-2)3=-8,(-3)2=94、分数的符号法则(指的是分子、分母及分数本身三个符号中,同时改变两个,值不变,但改变一个或三个都改变时,分数的值就变相反了),如:212121;bababa[基础练习]1☆从运算上看式子an,可以读作;从结果上看式子an可以读作.2★33=;(21)2=;-52=;22的平方是;3★下列各式正确的是()A.225(5)B.1996(1)1996C.2003(1)(1)0D.99(1)104★★下列说法正确的是()A.如果ab,那么22abB.如果22ab,那么abC.如果ab,那么22abD.如果ab,那么ab5★在2+32×(-6)这个算式中,存在着种运算.请你们讨论、交流,上面这个式子应该先算、再算、最后算.6▲有理数的运算①2253[]39②(-1)10×2+(-2)3÷4③(-5)3-3×41()2④111135()532114⑤(-10)4+[(-4)2-(3+32)×2]⑥3342293⑦25171()24(5)138612⑧2(10)8(2)(4)(3)⑨2310110.25(0.5)()(1)82⑩222223()4(1)8()3337★★已知a=3,2b=4,且ab,求ab的值。8★★某大楼地上共有12层,地下共有4层,每层高2.8米,请用正负数表示这栋楼每层的楼层号,某人乘电梯从地下3层升至地上7层,电梯一共上了多少米?9★★★已知a4与22ba互为相反数,求ba2的值。10★★★如果有理数a、b、c在数轴上的位置如图所示,求11abbacc的值.ab0c1五、【科学记数法】【近似数】把一个大于10的数记成a×10n的形式(其中a是整数数位只有一位的数),叫做科学记数法.其中:a:n的两种求法:1、2、[基础练习]1☆用科学记数数表示:1305000000=;-1020=.2☆水星和太阳的平均距离约为57900000km用科学记数法表示为.3★120万用科学记数法应写成;2.4万的原数是.4★.近似数3.5万精确到位.5★近似数0.4062精确到.6★5.47×105精确到位7★.3.4030×105精确到千位是.8★★某数有四舍五入得到3.240,那么原来的数一定介于和之间.9★★用四舍五入法求30951的近似值(精确到百位),结果是.