换元积分法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、第一类换元法二、第二类换元法三、小结第二节换元积分法问题xdx2cos,2sin)(Cx解决方法利用复合函数,设置中间变量.过程令xt2,21dtdxxdx2cosdttcos21Ctsin21.2sin21Cx一、第一类换元法在一般情况下:设),()(ufuF则.)()(CuFduuf如果)(xu(可微)[()]'[()]()[()]()dFxFxdxfxxdxCxFdxxxf)]([)()]([)(])([xuduuf由此可得换元法定理设)(uf具有原函数,dxxxf)()]([)(])([xuduuf第一类换元公式(凑微分法)说明使用此公式的关键在于将dxxg)(化为.)()]([dxxxf注意:观察点不同,所得结论不同.)(xu可导,则有换元公式定理1定理如何求解?考虑xdx2sin解法1:xdx2sincttdtcos21sin21;2cos21Cx解法2:xdx2sinxdxxcossin2cttdt22;sin2Cxdtdxxt21,2xdxdtxtcos,sin解法3:xdx2sinxdxxcossin2cttdt22.cos2Cxxdxdtxtsin,cos例1求.231dxx解:,)23(23121231xxxdxx231dxxx)23(23121duu121Culn21.)23ln(21Cxxu23cxdxxln1.,体现凑微分的思想即直接令间变量可以不设出来,注:第一类换元法的中xdxfdxxxfdxx2311ln|32|.2xCdxbaxf)(baxdbaxfa)(1一般地dxxx)23(23121dxx23xdx2323121xd23例1求.231dxx又解:cxdxxln1凑微分例2求.)1(3dxxx解:dxxx3)1(dxxx3)1(11)1(])1(1)1(1[32xdxx213112(1)(1)(1)2131(1)2xxxx.)1(21112Cxx例3求.)ln21(1dxxx解:dxxx)ln21(1)(lnln211xdx)ln21(ln21121xdx1ln|12ln|.2xC例4求221.;.cos;1.;.;111ln.;..1xxxxxxaedxbxxdxxecdxddxeeexedxfdxex凑微分)()]([)()]([xdxfdxxxf利用基本积分表的公式把被积函数中的一部分凑成中间变量的微分,常见的有:1111(ln||);1()()lnnnxxxxdxdaxbaxdxdxdxdxnxedxdeadxdaa2222cos(sin)sin(cos)sec(tan)csc(cot)1(arcsin)(arccos)11(arctan)(cot)1xdxdxxdxdxxdxdxxdxdxdxdxdxxdxdxdarcxx例5求.cottanxdxxdx和sincostancotcossin11(cos)(sin)cossinlncos.ln|sin|xxxdxdxxdxdxxxdxdxxxxCxC解:tanlncoscotlnsinxdxxCxdxxC例6求.122dxxa解:dxxa221dxaxa222111axdaxa2111.arctan1Caxa2211arctanxadxCaxa例7求.122dxxa解:221arcsinxadxCax222211111arcsin.1dxdxaaxxaxxdCaaxa例8求.122dxxa解:2211ln2axdxCaxaax2211112111211lnlnln.22dxdxaxaaxaxdaxdaxaaxaxaxaxaxcCaaax例9求解:(一)dxxsin1.cscxdxxdxcscdxxx2cos2sin2122cos2tan12xdxx2tan2tan1xdxCx2tanln.cotcsclnCxxcsclncsccotxdxxxC解:(二)dxxsin1xdxcscdxxx2sinsin)(coscos112xdxxucosduu211duuu111121Cuu11ln21.cos1cos1ln21Cxx类似地可推出Cxxxdxtanseclnsec例10求.25812dxxx解:dxxx25812dxx9)4(12dxx13413122341341312xdx.34arctan31Cxcadxxaaxarctan1122例11求.)11(12dxexxx解:,1112xxxdxexxx12)11()1(1xxdexx.1Cexx例12求.12321dxxx解:原式dxxxxxxx123212321232dxxdxx12413241)12(1281)32(3281xdxxdx.121213212133Cxx例13求解:.cossincossin2452xdxxxdxx和.cossin个的提出来凑微分有一个为奇数时,将单,的解题思路:形如nmxdxxmn24sincos(sin)xxdx222sin(1sin)(sin)xxdx246(sin2sinsin)(sin)xxxdx357121sinsinsin.357xxxC25sincosxxdx.22cos1sin22cos1coscossin22降幂,用均为偶数时,,的解题思路:形如xxxxnmxdxxmndxxxxdxxxxdxx)2cos2cos2cos1(8122cos122cos1cossin32224降幂拆项2coscosxx例14求解:.2cos3cosxdxx),5cos(cos212cos3cosxxxxdxxxxdxx)5cos(cos212cos3cos.5sin101sin21Cxx.1514相乘形式都可求,所有三角正弦、余弦,结合例例15求sincoscossinsin1:sincos2sincoscossin12sincos1lnsincos.2xxxxxdxdxxxxxxxdxdxxxxxxc解dxxxxcossinsinsincossincossincossincossincos.axbxdxAxBxaxbxmAxBxnAxBx形如的解题思路:令拆项例16求3533.tan.tansec.sincos.1cosaxdxbxxdxdxcxxdxdx2222tan1sec,cot1cscxxxx;)1(sectan2dxxx;sectansectan24xdxxxx);cos(tansec22xdxxx分子分母同除.2sec212cos222dxxxdx解:例17求解:.sin11cos11dxxdxx和)(sinsin1sin122xdxdxx1cot.sinxCx21cossinxdxx21cos1cosxdxx1cos1cos1cosxdxxx11cosdxxdxxsin112211(cos)coscosdxdxxx1sin1sin1sinxdxxx21sin1sinxdxx21sincosxdxx1tan.cosxcx例18求解:.2arcsin412dxxxdxxx2arcsin41222arcsin2112xdxx)2(arcsin2arcsin1xdxln|arcsin|.2xC•作业题:P197-1981.(4)(7)(12)(21)(23)•思考题:P197-1981.(25)(26)(27)•作业题:P197-198(旧P209)1.(4)(7)(12)(21)(23)•思考题:P197-198(旧P209)1.(25)(26)(27)思考题:求积分.)1(ln)ln(dxxxxpdxxxxd)ln1()ln(dxxxxp)1(ln)ln()ln()ln(xxdxxp1,)lnln(1,1)ln(1pCxxpCpxxp解:一、填空题:1、若CxFdxxf)()(而)(xu则duuf)(_______________;2、求)0(22adxax时,可作变量代换_____________________,然后再求积分;3、求dxxx211时可先令x_________;4、dxx_____)1(2xd;5、dxex2___)1(2xed;6、xdx____)ln53(xd;练习题一7、291xdx=____)3arctan(xd;8、21xxdx____)1(2xd;9、dtttsin_________________;10、222xadxx_______________.二、求下列不定积分:(第一类换元法)1、dxxaxa;2、)ln(lnlnxxxdx;3、221.1tanxxdxx;4、xxeedx;5、dxxx321;6、dxxxx4sin1cossin;7、dxxxxx3cossincossin;8、dxxx2491;9、dxxx239;10、)4(6xxdx;11、dxxxx)1(arctan;12、dxxexxx)1(1;13、dxxx2arccos2110;14、dxxxxsincostanln.练习题一(答案)一、1、CuF)(;;2、taxsec或taxcsc;3、t1;4、21;5、-2;6、51;7、31;8、;9、Ctcos2;10、Cxaaxaxa)(arcsin22222.二、1、Cxaaxa22arcsin;2、Cxlnlnln;3、Cx)1ln(cos2;4、Cexarctan;5、Cx233)1(92;6、Cx)arctan(sin212;7、Cxx32)cos(sin23;8、Cxx44932arcsin212;9、Cxx)9ln(29222;10、Cxx4ln24166;11、Cx2)(arctan;12、Cxexexx)1ln()ln(;13、Cx10ln210arccos2;14、Cx2)tan(ln21.问题?125dxxx解决方法改变中间变量的设置方法.过程令txsin,costd

1 / 69
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功