1微分方程的求解一、n阶微分方程1、二阶微分方程:22dydx+p(x)xddy+q(x)y=f(x)2、n阶微分方程:y(n)+a1y(n-1)+a2y(n-2)+a3y(n-3)+...+any=f(x)二、微分算子法1、定义符号:Dx=dd,D表示求导,如Dx3=3x2,Dny表示y对x求导n次;D1表示积分,如D1x=x212,nD1x表示对x积分n次,不要常数。2、计算将n阶微分方程改写成下式:Dny+a1Dn-1y+a2Dn-2y+a3Dn-3y+...+an-1Dy+any=f(x)即(Dn+a1Dn-1+a2Dn-2+a3Dn-3+...+an-1D+an)y=f(x)记F(D)=Dn+a1Dn-1+a2Dn-2+a3Dn-3+...+an-1D+an规定特解:y*=)(F(D)1xf3、F(D)1的性质(1)性质一:F(D)1ekx=F(k)1ekx(F(k)不等于0)注:若k为特征方程的m重根时,有F(D)1ekx=xm(D)F1(m)ekx=xm(k)F1(m)ekx2(2)性质二:F(D)1ekxv(x)=ekxk)F(D1+v(x)(3)性质三:特解形如F(D)1sin(ax)和F(D)1cos(ax)i.考察该式(该种形式万能解法):F(D)1eiax利用性质一和二解出结果,并取相应的虚部和实部作为原方程的特解注:欧拉公式eiax=cos(ax)+isin(ax)虚数i2=-1ii.若特解形如)F(D12sin(ax)和)F(D12cos(ax),也可按以下方法考虑:若F(-a2)≠0,则)F(D12sin(ax)=)F(-a12sin(ax))F(D12cos(ax)=)F(-a12cos(ax)若F(-a2)=0,则按i.进行求解,或者设-a2为F(-a2)的m重根,则)F(D12sin(ax)=xm)(DF12(m)sin(ax))F(D12cos(ax)=xm)(DF12(m)cos(ax)3(4)性质四(多项式):F(D)1(xp+b1xp-1+b2xp-2+...+bp-1x+bp)=Q(D)(xp+b1xp-1+b2xp-2+...+bp-1x+bp)注:Q(D)为商式,按D的升幂排列,且D的最高次幂为p。(5)性质五(分解因式):)(F(D)1xf=)()(F(D)F121xfD•=)()(F(D)F112xfD•(6)性质六:))()((F(D)121xfxf+=)(F(D)1)(F(D)121xfxf+三、例题练习例1.22dydx+4y=ex则(D2+4)y=ex,特解y*=412+Dex=4112+ex=51ex(性质一)例2、y(4)+y=2cos(3x),则(D4+1)y=2cos(3x)特解y*=114+D2cos(3x)=2114+Dcos(3x)=21)3-(122+cos(3x)=411cos(3x)(性质三)4例3、22dydx-4xddy+4y=x2e2x,则(D2-4D+4)y=x2e2x特解y*=+44-12DDx2e2x=e2x2-212)(+Dx2=e2x12Dx2=121x4e2x(性质二)例4、33dydx-322dydx+3xddy-y=ex,则(D3-3D2+3D-1)y=ex特解y*=31-1)(Dex=ex31-11)(+D•1=ex31D•1=61x3ex(性质二)例5、33dydx-y=sinx,则(D3-1)y=sinx,特解y*=1-13Dsinx考察1-13Deix1-13Deix=1-i13eix=1i1-+eix=21-ieix=21-i(cosx+isinx)=-21(cosx+sinx)+i21(cosx-sinx)取虚部为特解y*=21(cosx-sinx)(性质一、三)5例6、22dydx+y=cosx,则(D2+1)y=cosx,特解y*=112+Dcosx考察112+Deix112+Deix=i)i)(D-(1+Deix=i)i)(D-(1+Deix=i2i)-(1•Deix=eixi)-i(i21+•D•1=-2ixeix=21xsinx-i21xcosx取实部为特解y*=21xsinx(性质一、二、三)例7、44dydx-y=ex,则(D4-1)y=ex特解y*=1-14Dex=)11)(D1)(D-(12++Dex=)11)(11)(1-(12++Dex=1-1D•2121•ex=1-1D41ex=41ex1-11+D•1=41xex(性质一、二、五)例8、22dydx+y=x2-x+2,则(D2+1)y=x2-x+2特解y*=112+D(x2-x+2)=(1-D2)(x2-x+2)=x2-x(性质四)6例9、22dydx+2xddy+2y=x2e-x,则(D2+2D+2)y=x2e-x特解y*=1)1(12++Dx2e-x=e-x1)11-(12++Dx2=e-x112+Dx2=e-x(1-D2)x2=e-x(x2-2)(性质二、四)例10、22dydx+y=xcosx,则(D2+1)y=xcosx,特解y*=112+Dxcosx,考察112+Dxeix112+Dxeix=i)i)(D-(1+Dxeix=eixi)ii)(D-i(1+++Dx=eixi)2(D1+Dx=eix)4i21(1DD+x=eix)41i2x(1+Dx=eix)x41i4x(2+x=(cosx+isinx))x41i4x(2+x=41(xcosx+x2sinx)+i41(xsinx-x2cosx)取实部为特解y*=41(xcosx+x2sinx)(性质二、三、四)