1习3.12(2),求圆的面积为1时,面积变量S相对于周长l的变化率。解此时S是l的函数4222llS。于是S对周长l的变化率为2ldldS。当1S时2l,此时12ldldS。5(2).设axy||,在0x点可导,求的取值范围。解设axxf||)(。当0时,0x是函数的间断点,此时函数不可导。只讨论0。考虑左导数1,0111,0)0()(lim10axxxxxfxf,考虑右导数1,0111,)()(0)0()(lim10axxxxxfxf,因此该函数当1时在0x点可导,导数为0.6.设1,1)1sin(10,0,1)(xxbxaxxexfx。求ba,使得)(xf在1,0x可导。解法1因可导必连续,则afxfx)0(0)(lim0,则0a。这样在1x处)(xf也连续。此时110)0()(lim)0(0xexfxffxx,1lim0)0()(lim)0(00xxxfxffxx,。1111)1()(lim)1(1xxxfxffx,bxxbxfxffxx1)1sin(lim1)1()(lim)1(11。若)1('f存在,则应有b1。此时1)1('f。解法2同理可得0a。1lim)'1(lim)0(00xxxxeef,11lim)'(lim)0(00xxaxf,则1)0('f。11lim)'(lim)1(11xxaxf,bxbxbfxx)1cos(lim]'1)1sin([lim)1(11。若)1('f存在,则应有b1。此时1)1('f。27.设)(xf在点0x连续,且11)(lim0xxfx。(1)求)0(f,(2)问)(xf在点0x处是否可导。解(1)由连续性可知1)0(1)(lim0fxfx。若01)0(f,则xxfx1)(lim0,与题设矛盾。必有01)0(f,即1)0(f。(2)10)0()(lim1)(lim00xfxfxxfxx,由导数定义可知)(xf在点0x处可导,1)0('f。8.设)(xg在点0x连续,求xxgxf2sin)()(在0x处的导数。解由导数的定义)0(22sin)(lim2sin)(lim0)0()(lim)0('000gxxxgxxxgxfxffxxx注:不能xxgxxgxf2cos)(22sin)(')(',故)0(2)0('gf。9.设1)0(f,2)1(g,1)0('f,2)0('g。求(1)xxfxx)(coslim0,(2)xxfxx1)(2lim0,(3)12)(lim1xxgxx解(1)原极限0)0()(lim11coslim1)(1coslim000xfxfxxxxfxxxx1)0(')'(cos0fxx(2)原极限012]1)([2lim122)(2lim00xxfxxfxxxxxxx12ln2ln21)'2(2)0('022lim20)0()(lim000000xxxxxxfxxfxf(3)原极限1)1(2lim1]2)([lim1222)(lim111xxxxgxxxxxgxxxx112)'(21)0('1)1(2lim1)0()(lim111xxxxgxxxxgxg10.设1)0(f,1)0('f,求极限xxfx11)(lnlim1。3解原极限1)1()0('1lnlim0)0()(lim1ln0ln)0()(lnlim101fxxufufxxxfxfxux。习3.21.3.求下列函数的导数(3)xxy32log解3lnlog23ln1log2)'(loglog)'('3233232xxxxxxxxxxxy。这里用到导数公式axxaln1)(log。(8)nkkxy0)(解此时)()2)(1(nxxxxy。由公式''')'(uvwwuvvwuuvw,……则nknkjjjxy10)('。用对数求导法)ln()1ln(lnlnnxxxy两边求导数nxxxyy1111'。则nxxxnxxxxnxxxyy1111)()2)(1(1111'习3.31.设()fx可导,求下列函数的导数(3))(112xfy解2222222)(1)(')(2)(')(2)(11)]'(1[)(11'xfxfxfxfxfxfxfxfy4(5))(1ln2xfy解)(1)(')(2)(1)(11'222xfxfxfxfxfy2.求下列函数的导数(4)ln(234)xxxy解1'(234)'(234)xxxxxxy12ln2(1)3ln3(1)4ln4(1)(234)xxxxxx2ln23ln34ln4(234)xxxxxx(5)2sin12yx解'2sin12sin122sin12cos1212yxxxxx12sin12cos12(12)'212xxxx22sin12cos12212xxx2sin12cos12sin2121212xxxxx。(6)|sin|ln21xyx解xxxxxxxyxxcossin1)'1(1212ln2)'(sinsin1)'1(2ln2'11xxxcot1212ln21。(7)||ln22222axxaaxxy解)'(1)'(21'22222222222axxaxxaaxaxxaxy5)1(122222222222axxaxxaaxxxax)(1222222222222axxaxaxxaaxxax22222222axaaxxax222222222axaxaxax。(8)22ln()(0)yxxaa解2222222222111'1()'2yxxaxaxxaxxaxa2222222222221111xxaxxxaxaxxaxaxa(9)33222xxxy解法一2313313212313212313212)2()2()2()2()2()2()2('xxxxxxxxxxy23132323212313212)2(3)2(31)2()2)(22()2(21xxxxxxxxx2)2(12232332xxxxxxxx解法二对数求导法)2ln(31)2ln(21ln32xxxy)2(33)2(222'1322xxxxxyy,6)2()2(122)2(33)2(222'322332322xxxxxxxxxxxxxyy。(10)xxy211解xxxxxxxeeyxxxxx2112111)211ln(211)211ln()211ln()211ln(121)211ln(211212111)211ln(2112xxxxxxxxxx3.设1sin,0()0,0xxfxxx(《全解》有误)(1)若()fx在(,)内可导,求的取值范围;(2)若()fx在(,)内连续可导(即'()fx连续),求的取值范围。解(1)显然左导数(0)0f。右导数0001sin()(0)1(0)limlimlimsin0xxxxfxfxfxxxx,只有在时才有极限值0.则此时有导数(0)0f。于是当时,()fx处处可导,且211sincos,0'()0,0xxxfxxxx。(2)显然'()fx在0x时连续(初等函数)。在0x处,0011lim'()limsincosxxfxxxxx。只有在时,这个极限存在且为0.4.已知2yxa与ln(12)ybx在1x点相切,求,ab的值。(若两条曲线在点00(,)xy相交,且在这个交点处两条曲线的切线相同,则称两曲线在该点相切)解在1x处两曲线切线的斜率分别为21122xxxax,1122ln(12)123xxbbbxx。7相切时应有2233bb。根据相切的定义,在1x处应有21ln(121)ab,则1ln3ab。于是3ln31a。5.设)(xf在),(上可导。证明(1)若)(xf是奇函数,则)('xf是偶函数;(2)若)(xf是偶函数,则)('xf是奇函数;(3)若)(xf是周期函数,则)('xf也是周期函数且周期不变。证(1)若)(xf是奇函数,)()(xfxf。左边求导数)(')')((')]'([xfxxfxf,右边求导数)(')]'([xfxf,于是)(')('xfxf,即)(')('xfxf。故)('xf是偶函数。(2)若)(xf是偶函数,)()(xfxf。左边求导数)(')')((')]'([xfxxfxf,右边求导数)(')]'([xfxf,于是)(')('xfxf,即)(')('xfxf。故)('xf是奇函数。(3)若)(xf以T为周期,)()(xfTxf。左边求导数)(')')((')]'([TxfTxTxfTxf,右边求导数)(')]'([xfxf,于是)(')('xfTxf。故)('xf以T为周期。6.设)(xfy的反函数为)(yx,利用复合函数求导数的法则证明:若)(xfy可导且0)('xf,则)('1)('xfy。解此时)(xfx,两边对x求导可得)(')('1xfxf,于是)('1)('xfxf,即)('1)('xfy。7.设)(xyy是由方程xyeyx)sin(1所确定的隐函数,求'y及该函数在点)0,0(处的法线方程。解方程两端对x求导)'()'1)(cos(xyyeyyxxy。则xyxyyeyxxeyxy)cos()cos(',因此xyxyxeyxyeyxy)cos()cos('。该函数所确定的曲线在原点的切线斜率为1')0,0(y。因此法线在该点的斜率为1k。由点斜式可知法线的方程为xy。88.设()yyx是由方程22ln(2)xyxy所确定的隐函数。(1)求曲线()yyx与直线yx的交点坐标00(,)xy;(