)3()4(21)3()2(31.1325Lnieii)())((计算函数值及主值:一三课题习];)12(3ln;21);31(2e;)1)(2k5isin1)(2k5(cos3[)412(325kieiik01sin)2(031)1(.ziez解方程:二)22())23(2ln)31ln((kzkii)Re((2)0z,0z0z0)1()1()(1.2233zzf(z)yxiyixzf)(与解析性:讨论下列函数的可导性三222222)()4((3)yxyiyxxzfyixxyf(z))1)(2)(,0004,3(0,0,021222222zyxxyixyzfzzzxyzzzRC解析可导,不可导,)(处处不解析;可导)不解析;不可导可导)(析;条件,但不可导,不解)满足((。为解析函数,试求设四nmllxyxiymxmy,,)(.2323)1,3(mnl.0)0()(),sincos(.fivuzfyyyxeux并满足,求解析函数已知五))cossin()sincos()((yyyxieyyyxezfxx),(),(),,(),()(),(),(),,(),()(),(),(),,(),()(),(),(),,(),()(),(4),(,4:,),(.12101022yxfyxfyxfyxfDyxfyxfyxfyxfCyxfyxfyxfyxfByxfyxfyxfyxfAdyyxfdxdxdyyxfyxDyxfxD成立的充分条件是使为连续函数设:.选择题六dzzyxfdxdyDdzzyxfdxdyCdzzyxfdydxBdzzyxfdxdyAyyyxyyyxyyyxyy10122011220112201110),,()(),,()(),,()(),,()(2222222222dxddydzzyxfzyxfzyxyyxz),,(,),,(,1,0,,.222则上连续在限所围成的闭区域在第一卦为由设dxddydzzyxzyx)(,1:.3222222则设drrddDdrrddCdrrddBdzrdrdArr1040201042001042020111020sin)(sin)(sin)(1)(22的体积交换积分次序:七.dyyxfdxx2112),(.1dyyxfdxxx104222),(.21142xyxyo2dxyxfdyyy103222),(.410212323yx221yxdxyxfdydyyxfdxdyyxfdxyyxx10)1(11011101122),(),(),(.3222)(ayaxyxo2D:),(.二次积分化成极坐标下的把二重积分八Ddxdyyxf1Doxy222)(aayxxo222ayxxy222)2(ayax3Dy)(3,4:,,,),,(.22222yxzzyxdxdydzzyxf其中累次积分球面坐标下的柱面坐标坐标分别化成直角把三重积分九oxyz:.计算下列积分十422212sin2sin.1xxxdyyxdxdyyxdx}10,1|||),{(,||.22yxyxDdxdyxyD}02|),{(,)(.322axyxyxDdxdyyxDyxo222)(ayaxD).()0(4:,,)21()(.22224222tfttyxDfedxdyyxftftD求是连续函数其中).,(),(81),(,:.12222yxfdxdyyxfyxyxfCfyyxDDD求,,设十一