CMOS集成电路闩锁效应形成机理和对抗措施2————————————————————————————————作者:————————————————————————————————日期:III/13目录摘要:........................................................................................................................10前言............................................................................................................................11闩锁效应产生背景....................................................................................................22CMOS反相器............................................................................................................22.1反相器电路原理...............................................................................................22.2反相器工艺结构................................................................................................33闩锁效应基本原理....................................................................................................43.1闩锁效应简介...................................................................................................43.2闩锁效应机理研究...........................................................................................43.3闩锁效应触发方式...........................................................................................64闩锁措施研究............................................................................................................64.1版图级抗栓所措施...........................................................................................64.2工艺级抗闩锁措施............................................................................................74.3电路应用级抗闩锁措施....................................................................................95结论............................................................................................................................9参考文献:....................................................................................................................10个人收集整理,勿做商业用途1CMOS集成电路闩锁效应形成机理和对抗措施摘要:CMOSScaling理论下器件特征尺寸越来越小,这使得CMOS电路结构中的闩锁效应日益突出。闩锁是CMOS电路结构所固有的寄生效应,这种寄生的双极晶体管一旦被外界条件触发,会在电源与地之间形成大电流通路,导致器件失效。闩锁效应已成为CMOS集成电路在实际应用中主要失效的原因之一。本文以反相器电路为,介绍了CM0S集成电路的工艺结构;采用双端PNPN结构模型.较为详细地分析了CM0S电路闩锁效应的形成机理;给出了产生闩锁效应的必要条件与闩锁的触发方式,介绍了在电路版图级、工艺级和电路应用时如何采用各种有效的技术手段来避免、降低或消除闩锁的形成,这是CMOS集成电路得到广泛应用的根本保障。关键词:CM0S集成电路;闩锁效应;功耗;双端pnpn结;可控硅StudyonthemechanismofLatch-upeffectinCMOSICanditscountermeasuresWangxinAbstract:DevicechannellengthbecomemoreandmoreshortunderCMOSScaling,suchthatlatch-upeffectinCMOSstructureisstandoutincreasingly.Latch—upisaparasiticeffectinCMOScircuits.OncetheparasiticBJTistriggered,therewillbehighcurrentfromVDDtoGND,whichmakesthechipinvalidation.Latch—upphenomenonbecomethemainreasonofCMOSICapplied.Basedoninverter,thestructureofCMOSICarepresented,ThemodelofpnpndiodeistooktoanalyzethemechanismofLatch—upeffectinCMOSIC.Thenecessaryconditionsandthetriggermodeofthelatch-uparegiven.Manymeansareintroducedtohowtoavoid,decreaseoreliminatetheLatch—upeffectinlayout,technologicalprocessandcircuitsapplicationlevel.ItguaranteethewideutilizationforCMOSIC.Keywords:CMOSIC;Latch—upeffect;powerdissipation;pnpndiode;thyristor.0前言CMOS(ComplementaryMetal—Oxide—Semiconductor)集成电路是目前大规(LSI)和超大规模(VLSI)集成电路中广泛应用的一种电路结构,1963年由万雷(Wanlass)和萨支唐(Sah)提出1,它是将NMOS(N沟道MOS)和PMOS(P沟道MOS)组台所形成的逻辑器件.CMOS电路的主要优点是它只有在逻辑状态转换时(例如从0到1)才会产生较大的瞬态电流,而在稳定状态时只有极小的电流流过,当它应用于数字逻辑电路时,功率损耗可以大幅减少,通常只有几个纳瓦3,2.当每个芯片上的器件数目增多时,功率消耗变成一个主要限制因素,低功率消耗就成为个人收集整理,勿做商业用途2CMOS电路最吸引人的特色.此外,CMOS结构还有较佳的噪声抑制能力、很高的输人阻抗等特性.相对于传统的双极型、NMOS、PMOS结构的集成电路而言,其优越性是毫无疑问的,随着集成电路复杂度的增加,制造工艺技术由NMOS工艺转到了CMOS工艺对先进集成电路而言,CM0S技术是最主要的技术.实际上,在ULSI(甚大规模集成电路)电路中,唯有CMOS能胜任。尽管CMOs结构的电路有众多优点,但它并非完美无缺.比如,它的工艺要求比NMOS复杂(需要额外的阱形成技术)、器件占用硅片面积比较大(相对于NMOs而言,难以小型化)更主要的是,CMOS结构会形成电路的闩锁3.2.1(又称闭锁、自锁、闸流效应),这是CMOS电路与生俱来的寄生效应,它会严重影响电路的功能,造成电路功能混乱甚至电路根本无法工作或烧毁.这是早期CM0S技术不能被接受的重要原因之一.目前,无论从电路结构还是从制作工艺技术上都采取了一些技术来避免闩锁的形成,从而使CMOS电路的各种优点得以充分发挥。1闩锁效应产生背景早在1962年CMOS结构就被提出,但其应用被局限于某些特殊的领域,在这些应用中,性能和封装密度并不是主要考虑的因素。随着技术进步和工艺支持,CMOS电路已经占据了集成电路市场上很大的份额。低功耗、无比逻辑设计以及大的噪声容限都是CMOS电路的优点9。但随着器件尺寸的不断缩小,在CMOS结构中的一些寄生效应影响也越来越明显,闩锁效应就是一个最突出的例子,而且这种效应对CMOS电路有致命的破坏,因此,在超大规模集成电路中对闩锁效应的研究是非常有必要的,它不仅涉及到工艺的改进,促进新工艺的开发,而且与电路版图的布局结构相关联,以提高芯片的可靠性。一般而言,CPU和存储器这些对运算速度和版图面积要求较高的芯片中对闩锁可靠性研究比较多,可以通过工艺改进进行彻底消除,但这在一定程度上带来了成本的增加,而由于这些芯片都是通用芯片,所以工艺改进的成本是可以接受的。对于一些特殊用途的专用芯片的闩锁可靠性研究,显然,改进工艺并不是一种有效的方法9。功率集成电路由于其高低压器件的兼容以及某些特殊的应用场合,芯片在实际工作中不可避免会触发闩锁,因此对于这种专用集成电路可靠性的研究是非常必要的,而成本是制约这类芯片的一个最主要的因素,由于在普通的工艺线上也可以完成这类芯片的流水,所以对于功率集成电路中的可靠性研究都是基于版图布局布线和保护结构9。2CMOS反相器2.1反相器电路原理CMOS反相器为CMOS逻辑电路的基本单元,其结构如图1所示在CMOS反相器中,个人收集整理,勿做商业用途3增强型P沟MOS管与增强型N沟MOS管的栅极连接在一起,作为此反相器的输入端;它们的漏极也连接在一起作为反相器的输出端.N管的源极与衬底接点均接地,而P管的源极与衬底则连接至电源供应端(DDV)。当输人电压为低电平时(即inV=0),N管关闭,P管导通,输出端通过P沟道充电至DDV;当输入电压逐渐升高,使栅极电压等于Vdd时,N管导通,P管关闭,输出端将通过P沟道放电至零电势可见该结构实现了反相器的功能.图1CMOS反相器结构图CMOS反相器的重要特性是,当输出处于逻辑稳态(即OUTV或DDV)时,两个MOS管中仅有一个导通,因此由电源供应处流到地端的电流非常小,相当于器件关闭时的漏电流。事实上,只有在两个状态切换的极短时间内,才会有大电流流过(此时电路工作在放大区)因此与其它种类如N沟道MOSFET、双极型等逻辑电路相比,其稳态时的功率损耗非常低1。2.2反相器工艺结构图2为P阱CMOS反相器的工艺剖面图2。为了在CMOS应用中能同时将P沟道与N沟道MOSFET制作在同一片芯片上,需要将两管隔离.采用一额外的掺杂及扩散步骤在衬底中形成阱并施以反偏电压可起到隔离作用。阱中的掺杂种类与周围衬底不同,典型种类有P阱、N阱以及双阱.图2为使用P阱技术制作的