药理实验方法学

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第一章现代药理学实验方法与技术简介第一节分子生物学试验方法与技术分子生物技术在药理学实验中应用较为广泛,包括核酸分子探针的标记、核酸分子杂交、多聚酶链反应、蛋白印迹杂交技术、cDNA文库、随机分子库技术、外核基因在真核细胞中的表达、转基因动物、人类基因治疗等。现将更为常用的技术介绍如下:一、核酸分子探针的标记标记核酸分子探针(nucleicacidprobe)是进行核杂交的基础,根据核酸分子探针的来源及性质进行选择,选择的基本原则是具有高度的特异性,探针选择直接影响杂交结果的分析。根据检测对象和目的不同,,可选择不同的探针种类及标记方法。㈠探针种类1.基因组DNA探针是克隆化的各种基因片断,也是最常用的核酸探针,探针应尽可能选用基因编码(外显子),避免使用内含子及其它非编码序列。2.cDNA探针与mRNA互补的DNA链称cDNA,是一种较为理想的核酸探针,特异性较高。3.RNA探针RNA与RNA或DNA杂交体的探针稳定性,特异性高。4.寡核苷酸探针人工合成寡核苷酸片段做探针,可根据需要合成相应序列。㈡标记物常用的探针标记物有两类:放射性同位素和非放射性同位素。标记物的检测具有高度灵敏性和特异性。标记和探针结合不影响杂交的特异性和稳定性。其中放射性同位素是应用最多的探针标记物,但易造成放射性污染,多数同位素的半衰期短,不能长期存放。常用的放射性同位素有32P¸3P¸35S,有时也用14C,125I或131I。二、核酸分子杂交(nucleicacidhybridiazation)是指具有一定同源序列的两条核酸单链在一定的条件下,按碱基互补配对原则形成异质双链的过程。核酸分子杂交是分子生物学领域应用最广泛的技术,灵敏度高、特异性强,主要用于特异DNA或RNA的定性定量检测。三、聚合酶链反应(polymerasechainreaction,PCR)是一种体外酶促扩增特异DNA片段的方法。传统的DNA扩增法是分子克隆法,需经过DNA酶切、链接、转化等步骤构建含有目的基因的载体。然后导入细胞中进行扩增,再用同位素标记的探针进行筛选,操作复杂,耗时。PCR技术灵敏度2高,特异性强,操作简便。PCR是本世纪分子生物学研究领域中最重要的发明之一。四、cDNA文库是指以mRNA为模板,在反转录酶的作用下形成的互补DNA(complementaryDNA,cDNA)。cDNA文库是指一群含重组DNA细菌或嗜菌体克隆。每一个克隆只含一种mRNA的信息,足够数目克隆的总和则含细胞的全部mRNA信息,此种克隆群体叫cDNA文库。五.随机分子库技术(randommoleculerlibrary)采用不同技术手段和在不同的分子水平有效地实现分子的多样性。其技术路线,一是利用化学合成的方法生成已知结构的化合物,以某种特定方式和一定规律组合在一起,只要确定某一化合物具有活性,即可根据建库的组合方式确定其结构,围绕此技术发展的随机分子库总称为化学合成库(syntheticchemicallibrary)。二是利用基因工程方法直接合成的DNA或RNA的核酸库(nucleicacidlibrary),由DNA随即编码表达的小分子和大分子的混合群体而表达物的表面显露又提供了可从庞大的复杂的群体中快速筛选到目的物,这就是近几年发展起来的极富有应用潜力的核酸编码分子肽库(oligonucleotide-encodedpeptidelibrary)。六.真核基因的表达调控技术真核细胞具有比原核细胞更为庞大的和复杂的基因组。高等真核细胞基因组编码成千上万个基因,基因内遗传信息从DNA到蛋白质的传递过程,即基因表达过程受不同层次调节机制精密调控,此调控既决定着基因表达的量,又决定基因表达的时空顺序。调控过程精密复杂,涉及到转录前染色质的活化;转录水平的调节;转录后的加工;翻译水平的调节及翻译后的修饰等。基因表达的调控主要发生在转录水平。七.转基因动物是用实验方法导入的外源基因在其染色体基因组内稳定整合并能遗传给后代的一类动物。此种方法可建立转基因动物模型,以研究外源基因在整体动物中的表达调控率;能改变动物基因使其表现更符合人类需要;也可用转基因动物产生人类所需要的生物活性物质。第二节细胞生物学实验方法与技术细胞生物学是生命科学中的重要分支,它以生命基本单位细胞为研究对象,应用近代物理、化学和实验生物学方法,从显微、亚显微和分子水平来揭示细胞生命活动及规律,其中包括细胞的生长、发育、分裂、分化、遗传、变异(包括癌变)、兴奋、运动、代谢、衰老与死亡等基本生命现象,并且利用与调控细胞的行为活动,已达到为生产实践尤其为医药卫生事业服务。当前细胞生物学与医药保健事业联系的较为紧密的热点问题主要有以下几3种:1)真核细胞基因结构及其表达调控;2)细胞膜、膜系、受体与信号传递研究;3)细胞生长、分化、衰老、癌变、死亡,尤其是程序性细胞死亡的研究;4)细胞工程,包括基因工程及体细胞核移植的研究。一、细胞培养常用方法1、细胞原代培养(primayculture)又称初代培养,即直接从机体取下细胞、组织、或器官、让他们在体外维持与生长。原代细胞的特点是细胞或组织刚离开机体,他们的生物状态尚未发生很大的改变,一定程度上可反映他们在体内的状态,表现出来源组织或细胞的特性,因此用于药物实验尤其是药物对细胞活动、结构、代谢、有无毒性或杀伤作用等研究是极好工具。常用的原代培养方法有组织快培养法及消化培养法。前者方法简单,细胞也较易生长,尤其是培养心肌有时能观察到心肌组织块的搏动。细胞从组织块外长并铺满培养皿或培养瓶后即可进行传代。2、细胞的传代培养当细胞生长至单层汇合时,便需要进行分离培养否则会因无繁殖空间、营养耗竭而影响生长,甚至整片细胞脱离基质悬浮起来直至死亡。为此当细胞达到一定密度时必须传代或再次培养,目的是借此繁殖更多的细胞,另一方面是防止细胞的退化死亡。二、器官培养方法器官培养(organculture)是指用特殊的装置使器官、器官原基或它们的一部分在体外存活,幷保持其原有的结构和功能。器官培养可模拟体内的三维结构,用于观察组织间的相互反应、组织与细胞的分化以及外界因子包括药物对组织细胞的作用。器官培养方法很多,最经典的方法即表玻皿器官培养法;一种最常用的方法是不锈钢金属网格法及Wolff培养法和扩散盒培养法,实验者可根据情况选择采用。三、放射自显影术测定放射自显影术(autoradiography)是利用放射性同位素电离辐射对核子乳胶的感光作用,显示标本或样品中放射物的分布、定量以及定位的方法。放射性同位素能在紧密接触的感光乳胶中记录下它存在的部位和强度,准确显示出形态与功能的定位关系。现已可将放射自显影术与电镜以及生物分子结合起来。不但可以研究放射性物质在组织和细胞内的分布代谢,而且可以揭示核酸合成及其损伤等改变,目前已在生命科学各领域被广泛应用。四、染色体分析技术染色质或染色体是遗传物质在细胞水平的形态特征。前者是指当细胞处于合成期时遗传物质经碱性染料着色后,呈现出细丝状弥漫结构;当细胞进入分裂期时,染色质细丝高度螺旋化凝聚为形态有特征的染色体。特别是在分裂中期,复制后的染色体达到最高程度的凝聚,称为中期染色,是进行染色体形态观察分析的最佳时期。染色体分析应用领域越来越广,主要用于以下几方面:1)为临床诊断提供新手段;2)研究不育和习惯性流产发生的遗4传基础;3)通过检查胎儿的染色体,预防有染色体异常患儿出生(先天愚型);4)根据染色体的多肽性进行亲子和异型配子的起源研究;结合DNA重组技术可以将基因定位于染色体的具体区带上。五、电镜技术早在1940年,英国剑桥大学首先试制成功扫描电子显微镜,但因分辨率低无实用价值。1965年英国剑桥科学仪器有限公司开始生产出商品扫描电镜,其以显著优点广泛用于生物学、医学、物理学、化学、电子学及勘探、冶金、国防、公安、机械与轻工业等诸多领域,并已成为非常有用的研究工具。电镜主要特点:1)景深大,较光学显微镜大几百倍;2)图像富有立体感,是一个具有真实感的三维结构立体图象;3)图像放大范围大,光学显微镜有效放大倍数为1000倍左右,透视电镜的放大倍数为几百倍至100万倍,扫描电镜可放大十几倍至几十万倍;4)分辨率高,扫描电镜可达6-3nm;5)样品可在三度空间平移和旋转,聚焦后可以任意放大倍数,而不需调整重新聚焦。六、细胞、细胞器、及细胞间质的分离技术、1、细胞的分离分离不同的细胞及亚细胞组分在现代生物学研究中起着重要的作用。如研究某种药物治疗白血病的机理,需要分离培养人或动物的骨髓细胞,观察药物的细胞作用;研究与细胞生长分化有关的生长因子的作用,需将与此类因子有关的细胞分离出来;分离细胞膜,线粒体等细胞的亚组分,对于研究信号传递,某些遗传疾病,也都是必不可少的手段。2、细胞膜的分离细胞内的膜系统与细胞质膜统称为生物膜(biomembrane),他们都有共同结构和特征。首先要分离出形状完整的、具有生物活性的、高纯度的细胞膜,用于研究细胞膜的结构和功能,以利于观察膜在细胞与环境进行能量交换及信息传递的过程。3、细胞核的分离细胞核作为一个功能单位,完整的保存遗传物质,幷指导RNA合成,后者为蛋白质及其它细胞组分合成所必需。因此细胞核分离是研究基因表达及细胞核形态结构的首要步骤。不同组织来源的细胞经匀浆后,用分级离心或超声波处理等方法进行纯化。4、溶酶体的分离溶酶体是处理细胞吞噬物的细胞器,含有高浓度的各种水解酶类,调控细胞内的消化过程。溶酶体的分离常用于研究因溶酶体功能缺陷而引起的多种疾病。5、线粒体的分离线粒体是细胞呼吸的主要场所,细胞活动所需要的能量,主要由在线粒体内进行氧化所产生的能量供给。制备线粒体关键是保持其完整性及高纯度。6、细胞DNA、RNA分离与纯化核酸是遗传信息及基因表达的物质基础。核酸的提取与纯化关键是保持核酸的完整性,但较困难,主要因为:一是细胞内有活性很高的核糖核酸酶;二是酸碱等化学因素;三是高温机械5损伤等物理因素,需严格遵守操作规程。七、细胞凋亡研究方法细胞凋亡(apoptosis),又称为程序性死亡(programmedcelldeath,PCD)指的是有核细胞在一定条件下,通过激活其自身内部机制,尤其是开启与关闭某些基因以及内源性DNA内切酶活化,导致产生细胞自然性死亡的过程。可以认为细胞死亡的这种方式是一种生理性的自发过程。为此有人也称其为细胞自杀。目前认为程序性死亡几乎和细胞的增殖同样重要,如果没有细胞凋亡,个体不能形成与存活,或者发生疾病。只有通过细胞凋亡的发生,使特定细胞群体在特定的时间和特定的部位死亡。从而使机体在总体上保障其细胞数量,以及形态与功能的平衡。近年来如何用药物诱导癌细胞死亡也成为细胞凋亡的热点之一。透视电镜观察是研究细胞凋亡的首选方法。八、原位杂交原位杂交技术是将分子杂交与组织化学相结合,用标记的DNA或RNA为探针,在原位检测组织细胞内特异互补的DNA或RNA序列。它分为三类:DNA-DNA、DNA-RNA、RNA-RNA。已广泛用于生物学的各个领域。原位DNA末端标记可以用于细胞凋亡的定量研究。原位杂交技术和PCR技术结合用于检测人乳头瘤病毒(HPV)九、单克隆抗体是1975年被描述的一种可产生无限量,并可预测其性质的抗体制备技术。该技术的关键步骤在于淋巴细胞之间的融合,所以称为“淋巴细胞杂交瘤技术”;由于杂交瘤经过筛选可产生针对单一抗原决定簇抗体的细胞克隆,故称为单克隆抗体技术。该技术的问世使得免疫学研究与实践发生了革命性的改观,同时还为生物学和医药学的许多领域提供了前所未有的研究工具。人们利用其可精确地识别出极为复杂的分子,测定出无法测定的物质,识别出新的细胞群体,揭示了以往未曾了解的细胞分化途径,为肿瘤、感染性疾病、自身免疫性疾病等的诊断和治疗创造出令人兴奋的前景。十、神经细胞培养神经细胞培养是指从体内取出某一种神经组织,在无菌、适当温度和一定营养条件下模拟在体生理环境,使之存活和生长,幷保持其结构和功能。神经细胞培养按培养前切割程度分为器官培养、组织快培养和细胞分离培养。1、器官

1 / 96
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功