1/9二次函数(一)、课标要求具体内容知识技能要求过程性要求⑴⑵⑶⑷⑸⑹⑺二次函数的定义、表达式√√二次函数的图象及性质√二次函数图象的顶点、开口方向、对称轴√二次函数的应用√利用二次函数求一元二次方程的近似解√知识点归纳:1、二次函数的定义一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫二次函数.其中,x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.2、二次函数的自变量的取值范围(1)一般情况下,二次函数的自变量的取值范围是全体实数.如二次函数y=2x2-x+1,y=-x2+2,它们的自变量x的取值范围为全体实数.(2)实际问题中的二次函数,其自变量的取值范围还必须使实际问题有意义.如圆的面积S与圆的半径r的关系式S=πr2是一个二次函数,自变量r的取值范围是r0,这里r不能小于或等于0.3、回顾学过的函数一次函数y=kx+b(k≠0),其中包括正比例函数y=kx(k≠0).反比例函数(k≠0),二次函数y=ax2+bx+c(a≠0),这些函数的名称都反映了函数解析式与自变量的关系.领军教育·一对一讲义2/9二次函数y=ax2+bx+c的图象与性质知识归纳:1、用配方法可把y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,因此y=ax2+bx+c(a≠0)的图象是一条抛物线,形状与y=ax2的形状相同,只是位置不同.2、y=ax2+bx+c配方为,故抛物线y=ax2+bx+c的顶点为,对称轴为直线.3、二次函数y=ax2+bx+c的图象与性质如下:①当a0时,抛物线y=ax2+bx+c的开口向上,时,y随x的增大而减小;时,y随x的增大而增大;时,y有最小值,则抛物线的顶点是其最低点.②当a0时,抛物线y=ax2+bx+c的开口向下,时,y随x的增大而增大;时,y随x的增大而减小;时,y有最大值,则抛物线的顶点是其最高点.二次函数y=a(x-h)2+k的图象与性质知识归纳:1、二次函数y=a(x-h)2+k(a≠0)的图象是一条抛物线,它的形状与y=ax2(a≠0)的形状相同,只是位置不同.抛物线y=a(x-h)2+k的顶点是(h,k),对称轴是直线x=h.3/92、二次函数y=a(x-h)2+k(a≠0)的性质如下:当a0时,若xh,则y随x的增大而减小;若xh,则y随x的增大而增大;当x=h时,y有最小值k;当a0时,若xh,则y随x的增大而增大;若xh,则y随x的增大而减小;当x=h时,y有最大值k.3、抛物线y=a(x-h)2+k(a≠0)与y=ax2(a≠0)的关系.抛物线y=ax2向右(h0)或向左(h0)平移|h|个单位,得抛物线y=a(x-h)2,再把抛物线y=a(x-h)2向上(k0)或向下(k0)平移|k|个单位得抛物线y=a(x-h)2+k.(二)、知识要点1.二次函数解析式的几种形式:①一般式:(a、b、c为常数,a≠0)②顶点式:(a、h、k为常数,a≠0),其中(h,k)为顶点坐标。③交点式:,其中是抛物线与x轴交点的横坐标,即一元二次方程的两个根,且a≠0,(也叫两根式)。2.二次函数的图象①二次函数的图象是对称轴平行于(包括重合)y轴的抛物线,几个不同的二次函数,如果a相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。yaxbxc2yaxhk()2yaxxxx()()12xx12,axbxc20yaxbxc2yaxbxc2yaxhk()2yax24/9③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。然后取图象与y轴的交点(0,c),及此点关于对称轴对称的点(2h,c);如果图象与x轴有两个交点,就直接取这两个点(x1,0),(x2,0)就行了;如果图象与x轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y轴交点及其对称点),一般画图象找5个点。3.二次函数的性质函数二次函数(a、b、c为常数,a≠0)(a、h、k为常数,a≠0)a>0a<0a>0a<0图象(1)抛物线开口向上,并向上无限延伸(1)抛物线开口向下,并向下无限延伸(1)抛物线开口向上,并向上无限延伸(1)抛物线开口向下,并向下无限延伸性(2)对称轴是x=,顶点是()(2)对称轴是x=,顶点是()(2)对称轴是x=h,顶点是(h,k)(2)对称轴是x=h,顶点是(h,k)质(3)当时,y随x的增大而减小;当时,y随x的增大而增大(3)当时,y随x的增大而增大;当时,y随x的增大而减小(3)当时,y随x的增大而减小;当x>h时,y随x的增大而增大。(3)当x<h时,y随x的增大而增大;当x>h时,y随x的增大而减小(4)抛物线有最低点,当时,y有最小值,(4)抛物线有最高点,当时,y有最大值,(4)抛物线有最低点,当x=h时,y有最小值(4)抛物线有最高点,当x=h时,y有最大值yaxbxc2yaxhk()2yax2yaxbxc2yaxhk()2yaxbxc2yaxhk()2ba2baacba2442,ba2baacba2442,xba2xba2xba2xba2xhxba2yacba最小值442xba2yacba最大值442yk最小值yk最大值5/94.求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为(h,k),对称轴为直线,若a>0,y有最小值,当x=h时,;若a<0,y有最大值,当x=h时,。②公式法:直接利用顶点坐标公式(),求其顶点;对称轴是直线,若若,y有最大值,当5.抛物线与x轴交点情况:对于抛物线①当时,抛物线与x轴有两个交点,反之也成立。②当时,抛物线与x轴有一个交点,反之也成立,此交点即为顶点。③当时,抛物线与x轴无交点,反之也成立。经典例题:二次函数图像与系数的关系1.(2013•昭通)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.3是方程ax2+bx+c=0的一个根C.a+b+c=0D.当x<1时,y随x的增大而减小2.(2013•义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()yaxbxc2yaxhk()2xhyk最小值yk最大值baacba2442,xba2ayxbayacba02442,有最小值,当时,;最小值a0xbayacba2442时,最大值yaxbxca20()≠bac240bac240bac2406/9A.①②B.③④C.①④D.①③3.(2013•烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④4.(2013•济宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.当﹣1<x<3时,y>0C.c<0D.当x≥1时,y随x的增大而增大5.(2013•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()7/9A.a<0B.a﹣b+c<0C.﹣D.4ac﹣b2<﹣8a6.(2013•广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>O,②2a+b=O,③b2﹣4ac<O,④4a+2b+c>O其中正确的是()A.①③B.只有②C.②④D.③④7.(2013•鄂州)小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③a﹣2b+4c>0;④.你认为其中正确信息的个数有()A.2个B.3个C.1个D.4个8.(2013•滨州)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.49.(2013•包头)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正确的结论是()8/9A.①②B.①③C.①③④D.①②③④)10.在图中,函数y=-ax2与y=ax+b的图象可能是()BxyxyxyxyACDOOOO11.求三角形面积的最值问题已知二次函数cbxaxy2过点A(-1,0)B(3,0)C(0,3)⑴求函数解析式⑵在第一象限的抛物线上是否存在一点N,使得CNB的面积最大,若存在,求出点N的坐标,若不存在请说明理。12.已知如图,抛物线)(0acax2-axy2与y轴交于点C(0,3),与x轴交于A,B两点,点A的坐标为(-1,0).⑴求抛物线的解析式及顶点坐标;⑵设点P是在第一象限内抛物线上的一个动点,求使与四边形ABDC面积相等的四边形ACPB的点P的坐标;⑶在⑵的条件下,求APD的面积。9/9二次函数与三角形形似问题12.如图9,在平面直角坐标系中,顶点为的抛物线经过点和轴正半轴上的点,=2,.(1)求这条抛物线的表达式;(2)联结,求的大小;(3)如果点在轴上,且△与△相似,求点的坐标..xoyM2(0yaxbxa)AxBAOOB0120AOBOMAOMCxABCAOMCMABOxy图9