专题三整体法和隔离法选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。一、静力学中的整体与隔离通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。【例1】在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块()A.有摩擦力作用,摩擦力的方向水平向右B.有摩擦力作用,摩擦力的方向水平向左C.有摩擦力作用,但摩擦力的方向不能确定D.没有摩擦力的作用【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D.【点评】本题若以三角形木块a为研究对象,分析b和c对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b、c两个物体均匀速下滑,想一想,应选什么?【例2】有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P环向左移一小段距离,两环再bcam1m2AOBPQ次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化情况是()A.N不变,T变大B.N不变,T变小C.N变大,T变大D.N变大,T变小【解析】隔离法:设PQ与OA的夹角为α,对P有:mg+Tsinα=N对Q有:Tsinα=mg所以N=2mg,T=mg/sinα故N不变,T变大.答案为B整体法:选P、Q整体为研究对象,在竖直方向上受到的合外力为零,直接可得N=2mg,再选P或Q中任一为研究对象,受力分析可求出T=mg/sinα【点评】为使解答简便,选取研究对象时,一般优先考虑整体,若不能解答,再隔离考虑.【例3】如图所示,设A重10N,B重20N,A、B间的动摩擦因数为0.1,B与地面的摩擦因数为0.2.问:(1)至少对B向左施多大的力,才能使A、B发生相对滑动?(2)若A、B间μ1=0.4,B与地间μ2=0.l,则F多大才能产生相对滑动?【解析】(1)设A、B恰好滑动,则B对地也要恰好滑动,选A、B为研究对象,受力如图,由平衡条件得:F=fB+2T选A为研究对象,由平衡条件有T=fAfA=0.1×10=1NfB=0.2×30=6NF=8N。(2)同理F=11N。【例4】将长方形均匀木块锯成如图所示的三部分,其中B、C两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F作用时,木块恰能向右匀速运动,且A与B、A与C均无相对滑动,图中的θ角及F为已知,求A与B之间的压力为多少?【解析】以整体为研究对象,木块平衡得F=f合又因为mA=2mB=2mC且动摩擦因数相同,所以fB=F/4再以B为研究对象,受力如图所示,因B平衡,所以F1=fBsinθ即:F1=Fsinθ/4【点评】本题也可以分别对A、B进行隔离研究,其解答过程相当繁杂。【例5】如图所示,在两块相同的竖直木板间,有质量均为m的四块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为ABFTTfBATfAFABCθθfBf1F1ABFA.4mg、2mgB.2mg、0C.2mg、mgD.4mg、mg【解析】设左、右木板对砖摩擦力为f1,第3块砖对第2块砖摩擦为f2,则对四块砖作整体有:2f1=4mg,∴f1=2mg。对1、2块砖平衡有:f1+f2=2mg,∴f2=0,故B正确。【例6】如图所示,两个完全相同的重为G的球,两球与水平地面间的动摩擦因市委都是μ,一根轻绳两端固接在两个球上,在绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ。问当F至少多大时,两球将发生滑动?【解析】首先选用整体法,由平衡条件得F+2N=2G①再隔离任一球,由平衡条件得Tsin(θ/2)=μN②2·Tcos(θ/2)=F③①②③联立解之。【例7】如图所示,重为8N的球静止在与水平面成370角的光滑斜面上,并通过定滑轮与重4N的物体A相连,光滑挡板与水平而垂直,不计滑轮的摩擦,绳子的质量,求斜面和挡板所受的压力(sin370=0.6)。【解析】分别隔离物体A、球,并进行受力分析,如图所示:由平衡条件可得:T=4NTsin370+N2cos370=8N2sin370=N1+Tcos370得N1=1NN2=7N。【例8】如图所示,光滑的金属球B放在纵截面为等边三角形的物体A与坚直墙之间,恰好匀速下滑,已知物体A的重力是B重力的6倍,不计球跟斜面和墙之间的摩擦,问:物体A与水平面之间的动摩擦因数μ是多少?【解析】首先以B为研究对象,进行受力分析如图由平衡条件可得:N2=mBgcot300①再以A、B为系统为研究对象.受力分析如图。由平衡条件得:N2=f,f=μ(mA+mB)g②解得μ=√3/7【例9】如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧。在这过程中下面木块移动的距离为【分析】本题主要是胡克定律的应用,同时要求考生能形成正确的物理图景,合理选择研究对象,并能进行正确的受力分析。求弹簧2原来的压缩量时,应把m1、m2看做一个整体,2的压缩量x1=(m1+m2)g/k2。m1脱离弹簧后,把m2作为对象,2的压缩量x2=m2g/k2。d=x1-x2=m1g/k2。答案为C。【例10】如图所示,有两本完全相同的书A、B,书重均为5N,若将两本书等分成若干份后,交叉地叠放在一起置于光滑桌面上,并将书A固定不动,用水平向右的力F把书B匀速抽出。观测得一组数据如下:根据以上数据,试求:(1)若将书分成32份,力F应为多大?(2)该书的页数。(3)若两本书任意两张纸之间的动摩擦因数μ相等,则μ为多少?【解析】(l)从表中可看出,将书分成2,4,8,16,…是2倍数份时,拉力F将分别增加6N,12N,24N,…,增加恰为2的倍数,故将书分成32份时,增加拉力应为48N,故力F=46.5+48=94.5N;(2)逐页交叉时,需拉力F=190.5N,恰好是把书分成64份时,增加拉力48×2=96N,需拉力F=94.5+96=190.5N可见,逐页交叉刚好分为64份,即该书有64页;(3)两张纸之间动摩擦因数为μ,则F=190.5=μG/64+μ2G/64+μ3G/64+……+μ128G/64=μG/64·(1+2+3+……+128)=129μ×5∴μ=190.5/(129×5)=0.3。【点评】请注意,将书分成份数不同,有所不同。二、牛顿运动定律中的整体与隔离当系统内各物体具有相同的加速度时,应先把这个系统当作一个整体(即看成一个质点),分析受到的外力及运动情况,利用牛顿第二定律求出加速度.如若要求系统内各物体相互作用的内力,则把物体隔离,对某个物体单独进行受力分析,再利用牛顿第二定律对该物体列式求解.隔离物体时应对受力少的物体进行隔离比较方便。【例11】如图所示的三个物体A、B、C,其质量分别为m1、m2、m3,带有滑轮的物体B放在光滑平面上,滑轮和所有接触面间的摩擦及绳子的质量均不计.为使三物体间无相对运动,则水平推力的大小应为F=__________。【解析】以F1表示绕过滑轮的绳子的张力,为使三物体间FABC无相对运动,则对于物体C有:F1=m3g,以a表示物体A在拉力F1作用下的加速度,则有gmmmFa1311,由于三物体间无相对运动,则上述的a也就是三物体作为一个整物体运动的加速度,故得F=(m1+m2+m3)a=13mm(m1+m2+m3)g【例12】如图,底座A上装有一根直立竖杆,其总质量为M,杆上套有质量为m的环B,它与杆有摩擦。当环从底座以初速向上飞起时(底座保持静止),环的加速度为a,求环在升起的过程中,底座对水平面的压力分别是多大?【解析】采用隔离法:选环为研究对象,则f+mg=ma(1)选底座为研究对象,有F+f’-Mg=0(2)又f=f’(3)联立(1)(2)(3)解得:F=Mg-m(a-g)采用整体法:选A、B整体为研究对象,其受力如图,A的加速度为a,向下;B的加速度为0.选向下为正方向,有:(M+m)g-F=ma解之:F=Mg-m(a-g)【例13】如图,质量M=10kg的木楔ABC静置于粗糙水平地面上,与地面动摩擦因数μ=0.02.在木楔的倾角θ为300的斜面上,有一质量为m=1.0kg的物块由静止开始沿斜面下滑。当滑行路程s=1.4m时,其速度v=1.4m/s。在这个过程中木楔没有动。求地面对木楔的摩擦力的大小和方向。(重力加速度g=10m/s2)【解析】由匀加速运动的公式v2=vo2+2as,得物块沿斜面下滑的加速度为7.04.124.1222svam/s2(1)由于singa=5m/s2,可知物块受到摩擦力作用。分析物块受力,它受三个力,如图.对于沿斜面的方向和垂直于斜面的方向,由牛顿定律,有mafmg1sin(2)0cos1Fmg(3)分析木楔受力,它受五个力作用,如图.对于水平方向,由牛顿定律,有(M+m)gFABMAmθBCθfmmgF1MgAf2θBCF2f1F1ABv0sincos112Fff(4)由此可解的地面对木楔的摩擦力cos)sin(sincoscossin112mamgmgfFf61.0cosmaN此力方向与图中所设的一致(由C指向B的方向).上面是用隔离法解得,下面我们用整体法求解(1)式同上。选M、m组成的系统为研究对象,系统受到的外力如图.将加速度a分解为水平的acosθ和竖直的asinθ,对系统运用牛顿定律(M加速度为0),有水平方向:61.0cosmafN“-”表示方向与图示方向相反竖直方向:sin)(maFgmM可解出地面对M的支持力。【点评】从上面两个例题中可看出,若系统内各物体加速度不相同而又不需要求系统内物体间的相互作用力时,只对系统分析外力,不考虑物体间相互作用的内力,可以大大简化数学运算.运用此方法时,要抓住两点(1)只分析系统受到的外力.(2)分析系统内各物体的加速度的大小和方向。三、连接体中的整体与隔离【例14】如图所示,木块A、B质量分别为m、M,用一轻绳连接,在水平力F的作用下沿光滑水平面加速运动,求A、B间轻绳的张力T。【分析】A、B有相同的运动状态,可以以整体为研究对象。求A、B间作用力可以A为研究对象。对整体F=(M+m)a对木块AT=ma【点评】当处理两个或两个以上物体的情况时可以取整体为研究对象,也可以以个体为研究对象,特别是在系统有相同运动状态时【例