电路隔离方法与分类

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

电路隔离的主要目的是通过隔离元器件把噪声干扰的路径切断,从而达到抑制噪声干扰的效果。在采用了电路隔离的措施以后,绝大多数电路都能够取得良好的抑制噪声的效果,使设备符合电磁兼容性的要求。电路隔离主要有:模拟电路的隔离、数字电路的隔离、数字电路与模拟电路之间的隔离。所使用的隔离方法有:变压器隔离法、脉冲变压器隔离法、继电器隔离法、光电耦合器隔离法、直流电压隔离法、线性隔离放大器隔离法、光纤隔离法、A/D转换器隔离法等。数字电路的隔离主要有:脉冲变压器隔离、继电器隔离、光电耦合器隔离、光纤隔离等。其中数字量输入隔离方式主要采用脉冲变压器隔离、光电耦合器隔离;而数字量输出隔离方式主要采用光电耦合器隔离、继电器隔离、高频变压器隔离(个别情况下采用)。模拟电路的隔离比较复杂,主要取决于对传输通道的精度要求,对精度要求越高,其通道的成本也就越高;然而,当性能的要求上升为主要矛盾时,应当以性能为主选择隔离元器件,把成本放在第二位;反之,应当从价格的角度出发选择隔离元器件。模拟电路的隔离主要采用变压器隔离、互感器隔离、直流电压隔离器隔离、线性隔离放大器隔离。模拟电路与数字电路之间的隔离主要采用模/数转换装置;对于要求较高的电路,除采用模/数转换装置外,还应在模/数转换装置的两端分别加入模拟隔离元器件和数字隔离元器件。2模拟电路的隔离一套控制装置或者一台电子电气设备,通常包含供电系统,模拟信号测量系统,模拟信号控制系统。而供电系统又可分为交流供电系统和直流供电系统,交流供电系统主要采用变压器隔离,直流供电系统主要采用直流电压隔离器隔离。模拟信号测量系统相对来说比较复杂,既要考虑其精度,频带宽度的因素,又要考虑其价格因素;对于高电压、大电流信号,一般采用互感器(电压互感器、电流互感器)隔离法,近年来,又出现了霍尔变送器,这些元器件都是高电压、大电流信号测量常规使用的元器件;对于微电压、微电流信号,一般采用线性隔离放大器。模拟信号控制系统与模拟信号测量系统的隔离类似,一般采用变压器、直流电压隔离器。2.1供电系统的隔离2.1.1交流供电系统的隔离由于交流电网中存在着大量的谐波,雷击浪涌,高频干扰等噪声,所以对由交流电源供电的控制装置和电子电气设备,都应采取抑制来自交流电源干扰的措施。采用电源隔离变压器,可以有效地抑制窜入交流电源中的噪声干扰。但是,普通变压器却不能完全起到抗干扰的作用,这是因为,虽然一次绕组和二次绕组之间是绝缘的,能够阻止一次侧的噪声电压、电流直接传输到二次侧,有隔离作用。然而,由于分布电容(绕组与铁心之间,绕组之间,层匝之间和引线之间)的存在,交流电网中的噪声会通过分布电容耦合到二次侧。为了抑制噪声,必须在绕组间加屏蔽层,这样就能有效地抑制噪声,消除干扰,提高设备的电磁兼容性。图1(a)、(b)所示为不加屏蔽层和加屏蔽层的隔离变压器分布电容的情况。图1变压器隔离在图1(a)中,隔离变压器不加屏蔽层,C12是一次绕组和二次绕组之间的分布电容,在共模电压u1C的作用下,二次绕组所耦合的共模噪声电压为u2C,C2E是二次侧的对地电容,则从图可知二次侧的共模噪声电压u2C为:u2C=u1CC12/(C12+C2E)在图1(b)中,隔离变压器加屏蔽层,其中C10、C20分别代表一次绕组和二次绕组对屏蔽层的分布电容,ZE是屏蔽层的对地阻抗,C2E是二次绕侧的对地电容,则从图可知二次侧的共模噪声电压u2C为:u2C=〔u1CZE/(ZE+1/jωC10)〕〔C2E/(C20+C2E)〕由于C2是屏蔽层的对地阻抗,在低频范围内,ZE《(1/jωC10),所以u2C→0。由此可见,采取屏蔽措施后,通过隔离变压器的共模噪声电压被大大地削弱了。随着技术的进步,国外已研制成功了专门抑制噪声的隔离变压器(NoiseCutoutTransformer,简称NCT),这是一种绕组和变压器整体都有屏蔽层的多层屏蔽变压器。这类变压器的结构,铁心材料,形状及其线圈位置都比较特殊,它可以切断高频噪声漏磁通和绕组的交链,从而使差模噪声不易感应到二次侧,故这种变压器既能切断共模噪声电压,又能切断差模噪声电压,是比较理想的隔离变压器。2.1.2直流供电系统的隔离当控制装置和电子电气设备的内部子系统之间需要相互隔离时,它们各自的直流供电电源间也应该相互隔离,其隔离方式如下:第一种是在交流侧使用隔离变压器,如图2(a)所示;第二种是使用直流电压隔离器(即DC/DC变换器)。2.2模拟信号测量系统的隔离对于具有直流分量和共模噪声干扰比较严重的场合,在模拟信号的测量中必须采取措施,使输入与输出完全隔离,彼此绝缘,消除噪声的耦合。隔离对系统有如下好处:——防止模拟系统干扰,尤其是电力系统的接地干扰进入逻辑系统,导致逻辑系统的工作紊乱;——在精密测量系统中,防止数字系统的脉冲波动干扰进入模拟系统,尤其是前置放大部分,因为前置放大部分的信号非常微弱,较小的骚扰波动信号就会把有用信号淹没。2.2.1高电压、大电流信号的隔离高电压、大电流信号采用互感器隔离,其抑制噪声的原理与隔离变压器类似,这里不再赘述。互感器隔离的应用。2.2.2微电压、微电流信号的隔离微电压、微电流模拟信号的隔离系统相对来说比较复杂,既要考虑其精度,频带宽度的因素,又要考虑其价格因素。一般情况下,对于较小量的共模噪声,采用差动放大器或仪表放大器就能够取得良好的效果,但对于具有较大量的共模噪声,且测量精度要求比较高的场合,应该选择高精度线性隔离放大器,如BB公司的ISO106,其主要参数如下:——交流耐压,60Hz;——直流耐压——冲击耐压8kVPK/10s;——非线性误差0.007%;——隔离噪声抑制比交流130dB,直流160dB。ISO106的优秀参数,使其大量地应用于精密测量系统中,线性隔离放大器的应用如图3(b)所示。2.3模拟信号控制系统的隔离如前所述,模拟信号控制系统的隔离与模拟信号测量系统的隔离类似,即交流信号一般采用变压器隔离,直流信号一般采用直流电压隔离器或线性隔离器隔离。3数字电路的隔离与模拟系统类似,一套控制装置,或者一台电子电气设备,通常所包含的数字系统有:数字信号输入系统,数字信号输出系统。数字量输入系统主要采用脉冲变压器隔离,光电耦合器隔离;而数字量输出系统主要采用光电耦合器隔离,继电器隔离,个别情况也可采用高频变压器隔离。3.1光电耦合器隔离这种隔离方法是用光电耦合器把输入信号与内部电路隔离开来,或者是把内部输出信号与外部电路隔离开来。目前,大多数光电耦合器件的隔离电压都在2.5kV以上,有些器件达到了8kV,既有高压大电流大功率光电耦合器件,又有高速高频光电耦合器件(频率高达10MHz)。常用的器件如:4N25,其隔离电压为5.3kV;6N137,其隔离电压为3kV,频率在10MHz以上。3.2脉冲变压器隔离脉冲变压器的匝数较少,而且一次绕组和二次绕组分别绕于铁氧体磁芯的两侧,这种工艺使得它的分布电容特小,仅为几个pF,所以可作为脉冲信号的隔离元件。脉冲变压器传递输入、输出脉冲信号时,不传递直流分量,因而在微电子技术控制系统中得到了广泛的应用。一般地说,脉冲变压器的信号传递频率在1kHz~1MHz之间,新型的高频脉冲变压器的传递频率可达到10MHz。图5(a)是脉冲变压器的示意图。脉冲变压器主要用于晶闸管(SCR)、大功率晶体管(CTR)、IGBT等可控器件的控制隔离中。图5(b)是脉冲变压器的应用实例。3.3继电器隔离继电器是常用的数字输出隔离元件,用继电器作为隔离元件简单实用,价格低廉。图6是继电器输出隔离的实例示意图。在该电路中,通过继电器把低压直流与高压交流隔离开来,使高压交流侧的干扰无法进入低压直流侧。4模拟电路与数字电路之间的隔离一般地说,模拟电路与数字电路之间的转换通过模数转换器(A/D)或数模转换器(D/A)来实现。但是,若不采取一定的措施,数字电路中的高频振荡信号就会对模拟电路带来一定的干扰,影响测量的精度。为了抑制数字电路对模拟电路带来的高频干扰,一般须将模拟地与数字地分开布线,参见图7(a)。这种布线方式不能彻底排除来自数字电路的高频干扰,要想排除来自数字电路的高频干扰,必须把数字电路与模拟电路隔离开来,常用的隔离方法是在A/D转换器与数字电路之间加入光电耦合器,把数字电路与模拟电路隔离开,参见图7(b)。但这种电路还不能从根本上解决模拟电路中的干扰问题,仍然存在着一定的缺陷,这是因为信号电路中的共模干扰和差模干扰没有得到有效的抑制,对于高精密测量的场合,还不能满足要求。对于具有严重干扰的测量场合,可采用图7(c)所示的电路。在该电路中,把信号接收部分与模拟处理部分也进行了隔离,因为在前置处理级与模数转换器(A/D)之间加入线性隔离放大器,把信号地与模拟地隔开,同时在模数转换器(A/D)与数字电路之间采用光电耦合器隔离,把模拟地与数字地隔开,这样一来,既防止了数字系统的高频干扰进入模拟部分,又阻断了来自前置电路部分的共模干扰和差模干扰。当然,这种系统的造价较高,一般只用于高精度的测量系统中。数模转换(D/A)电路的隔离与模数转换(A/D)电路的隔离类似,因而所采取的技术措施也差不多,是数模转换(D/A)电路的隔离方法之一。

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功