2008年江西省高考数学试卷(理科)答案与解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12008年江西省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•江西)在复平面内,复数z=sin2+icos2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.菁优网版权所有【分析】由复数的几何意义作出相应判断.【解答】解:∵sin2>0,cos2<0,∴z=sin2+icos2对应的点在第四象限,故选D.【点评】本题考查的是复数的几何意义,属于基础题.2.(5分)(2008•江西)定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为()A.0B.2C.3D.6【考点】集合的确定性、互异性、无序性.菁优网版权所有【分析】根据题意,结合题目的新运算法则,可得集合A*B中的元素可能的情况;再由集合元素的互异性,可得集合A*B,进而可得答案.【解答】解:根据题意,设A={1,2},B={0,2},则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D.【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.3.(5分)(2008•江西)若函数y=f(x)的值域是,则函数的值域是()A.B.C.D.【考点】基本不等式在最值问题中的应用.菁优网版权所有【分析】先换元,转化成积定和的值域,利用基本不等式.【解答】解:令t=f(x),则,则y=t+≥=2当且仅当t=即t=1时取“=”,所以y的最小值为2故选项为B【点评】做选择题时,求得最小值通过排除法得值域;考查用基本不等式求最值24.(5分)(2008•江西)=()A.B.0C.D.不存在【考点】极限及其运算.菁优网版权所有【专题】计算题.【分析】把原式进行分母有理化,得:,消除零因子简化为,由此可求出的值.【解答】解:==,故选A.【点评】本题考查池函数的极限,解题时要注意计算能力的培养.5.(5分)(2008•江西)在数列{an}中,a1=2,an+1=an+ln(1+),则an=()A.2+lnnB.2+(n﹣1)lnnC.2+nlnnD.1+n+lnn【考点】数列的概念及简单表示法.菁优网版权所有【专题】点列、递归数列与数学归纳法.【分析】把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.【解答】解:∵,,…∴=故选:A.3【点评】数列的通项an或前n项和Sn中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n﹣1等,这种办法通常称迭代或递推.解答本题需了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.6.(5分)(2008•江西)函数y=tanx+sinx﹣|tanx﹣sinx|在区间内的图象是()A.B.C.D.【考点】正切函数的图象;分段函数的解析式求法及其图象的作法;三角函数值的符号;正弦函数的图象;余弦函数的图象.菁优网版权所有【专题】压轴题;分类讨论.【分析】本题的解题关键是分析正弦函数与正切函数在区间上的符号,但因为已知区间即包含第II象限内的角,也包含第III象限内的角,因此要进行分类讨论.【解答】解:函数,分段画出函数图象如D图示,故选D.【点评】准确记忆三角函数在不同象限内的符号是解决本题的关键,其口决是“第一象限全为正,第二象限负余弦,第三象限负正切,第四象限负正弦.”7.(5分)(2008•江西)已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,]C.(0,)D.[,1)【考点】椭圆的应用.菁优网版权所有【专题】计算题.【分析】由•=0知M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴c<b,c2<b2=a2﹣c2.由此能够推导出椭圆离心率的取值范围.【解答】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵•=0,4∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.8.(5分)(2008•江西)展开式中的常数项为()A.1B.46C.4245D.4246【考点】二项式定理的应用.菁优网版权所有【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数为0得常数项.【解答】解:的展开式的通项为,其中r=0,1,2…6的展开式的通项为=,其中k=0,1,2,…10的通项为=当时,展开式中的项为常数项∴,,时,展开式中的项为常数项∴展开式中的常数项为1+C63C104+C66C108=4246故选项为D【点评】本题考查二项展开式的通项公式是解决展开式的特定项问题的工具.9.(5分)(2008•江西)若0<a1<a2,0<b1<b2,且a1+a2=b1+b2=1,则下列代数式中值最大的是()A.a1b1+a2b2B.a1a2+b1b2C.a1b2+a2b1D.【考点】基本不等式.菁优网版权所有【分析】本题为比较一些式子的大小问题,可利用做差法和基本不等式比较,较复杂;也可取特值比较.5【解答】解:又∵a1b1+a2b2﹣(a1b2+a2b1)=(a1﹣a2)b1﹣(a1﹣a2)b2=(a2﹣a1)(b2﹣b1)>0∴a1b1+a2b2>(a1b2+a2b1)而1=(a1+a2)(b1+b2)=a1b1+a2b1+a1b2+a2b2<2(a1b1+a2b2)∴解法二:取,,,即可.故选A【点评】本题主要考查比较大小问题,注意选择题的特殊做法,切勿“小题大做”10.(5分)(2008•江西)连接球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于、,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB、CD可能相交于点M;②弦AB、CD可能相交于点N;③MN的最大值为5;④MN的最小值为1其中真命题的个数为()A.1个B.2个C.3个D.4个【考点】球面距离及相关计算.菁优网版权所有【专题】计算题;综合题.【分析】根据题意,由球的弦与直径的关系,判定选项的正误,然后回答该题.【解答】解:因为直径是8,则①③④正确;②错误.易求得M、N到球心O的距离分别为3、2,若两弦交于N,则OM⊥MN,Rt△OMN中,有OM<ON,矛盾.当M、O、N共线时分别取最大值5最小值1.故选C.【点评】本题考查球面距离及其计算,考查空间想象能力,逻辑思维能力,是基础题.11.(5分)(2008•江西)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.B.C.D.【考点】等可能事件的概率.菁优网版权所有【专题】计算题;压轴题.【分析】本题是一个古典概型,解题时要看清试验发生时的总事件数和一天中任一时刻的四个数字之和为23事件数,前者可以根据生活经验推出,后者需要列举得到事件数.【解答】解:一天显示的时间总共有24×60=1440种,和为23有09:59,19:58,18:59,19:49总共有4种,故所求概率为P==.故选C6【点评】本题考查的是古典概型,如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数是解题的关键.12.(5分)(2008•江西)已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)【考点】一元二次不等式的应用.菁优网版权所有【专题】压轴题.【分析】当m≤0时,显然不成立;当m>0时,因为f(0)=1>0,所以仅对对称轴进行讨论即可.【解答】解:当m≤0时,当x接近+∞时,函数f(x)=2mx2﹣2(4﹣m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=4(4﹣m)2﹣8m=4(m﹣8)(m﹣2)<0即可,即4<m<8则0<m<8故选B.【点评】本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•江西)直角坐标平面上三点A(1,2)、B(3,﹣2)、C(9,7),若E、F为线段BC的三等分点,则=22.【考点】平面向量数量积的运算.菁优网版权所有【分析】本题首先要用等比分点的公式计算出E和F两点的坐标,根据所求的坐标得到向量的坐标,把向量的坐标代入向量的数量积公式,求出结果.【解答】解:根据三等分点的坐标公式,得E(5,1),F(7,4);=(4,﹣1),=(6,2)=4×6﹣2=22,故答案为:22【点评】看清问题的实质,认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.14.(4分)(2008•江西)不等式的解集为(﹣∞,﹣3]∪(0,1].7【考点】指数函数的单调性与特殊点;其他不等式的解法.菁优网版权所有【专题】计算题.【分析】≤0⇒x∈(﹣∞,﹣3]∪(0,1]【解答】解:∵,∴,∴,∴∴x∈(﹣∞,﹣3]∪(0,1]答案:(﹣∞,﹣3]∪(0,1].【点评】本题考查指数函数的性质和应用,解题时要认真审题,仔细解答.15.(4分)(2008•江西)过抛物线x2=2py(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴左侧),则=.【考点】抛物线的简单性质.菁优网版权所有【专题】计算题;压轴题.【分析】作AA1⊥x轴,BB1⊥x轴.则可知AA1∥OF∥BB1,根据比例线段的性质可知==,根据抛物线的焦点和直线的倾斜角可表示出直线的方程,与抛物线方程联立消去x,根据韦达定理求得xA+xB和xAxB的表达式,进而可求得xAxB=﹣()2,整理后两边同除以xB2得关于的一元二次方程,求得的值,进而求得.【解答】解:如图,作AA1⊥x轴,BB1⊥x轴.则AA1∥OF∥BB1,∴==,又已知xA<0,xB>0,8∴=﹣,∵直线AB方程为y=xtan30°+即y=x+,与x2=2py联立得x2﹣px﹣p2=0∴xA+xB=p,xA•xB=﹣p2,∴xAxB=﹣p2=﹣()2=﹣(xA2+xB2+2xAxB)∴3xA2+3xB2+10xAxB=0两边同除以xB2(xB2≠0)得3()2+10+3=0∴=﹣3或﹣.又∵xA+xB=p>0,∴xA>﹣xB,∴>﹣1,∴=﹣=﹣(﹣)=.故答案为:【点评】本题主要考查了抛物线的性质,直线与抛物线的关系以及比例线段的知识.考查了学生综合分析问题和解决问题的能力.916.(4分)(2008•江西)如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P(图(2))有下列四个命题:A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点PC.任意摆放该容器,当水面静止时,水面都恰好经过点PD.若往容器内再注入a升水,则容器恰好能装满.其中真命题的代号是:BD(写出所有真命题的代号).【考点】棱柱的结构特征.菁优网版权所有【专题】综合题;压轴题;探究型.【分析】设出图(1)的水高,和几何体的高,计算水的体积,容易判断A、D的正误;对于B,当容器侧面水平放置时,P点在长方体中截面上,根据体积判断它是正确的.根据当水面与正四棱锥的一个侧面重合时,计算水的体积和实际不符,是错误的.【解答】解:设图(1)水的高度h2几何体的高为h1图(2)中水的体积为b2h1

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功