文科数学解三角形专题(高考题)练习【附答案】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

解三角形专题练习1、在b、c,向量2sin,3mB,2cos2,2cos12BnB,且//mn。(I)求锐角B的大小;(II)如果2b,求ABC的面积ABCS的最大值。2、在△ABC中,角A,B,C的对边分别为a,b,c,且.coscos3cosBcBaCb(I)求cosB的值;(II)若2BCBA,且22b,求ca和b的值.3、在ABC中,5cos5A,10cos10B.(Ⅰ)求角C;(Ⅱ)设2AB,求ABC的面积.4、在△ABC中,A、B、C所对边的长分别为a、b、c,已知向量(1,2sin)mA,(sin,1cos),//,3.nAAmnbca满足(I)求A的大小;(II)求)sin(6B的值.5、△ABC中,a,b,c分别是角A,B,C的对边,且有sin2C+3cos(A+B)=0,.当13,4ca,求△ABC的面积。6、在△ABC中,角A、B、C所对边分别为a,b,c,已知11tan,tan23AB,且最长边的边长为l.求:(I)角C的大小;(II)△ABC最短边的长.7、在△ABC中,a、b、c分别是角A、B、C的对边,且coscosBCbac2.(I)求角B的大小;(II)若bac134,,求△ABC的面积.8、(2009全国卷Ⅱ文)设△ABC的内角A、B、C的对边长分别为a、b、c,23cos)cos(BCA,acb2,求B.9、(2009天津卷文)在ABC中,ACACBCsin2sin,3,5(Ⅰ)求AB的值。(Ⅱ)求)42sin(A的值。1、(1)解:m∥n2sinB(2cos2B2-1)=-3cos2B2sinBcosB=-3cos2Btan2B=-3……4分∵0<2B<π,∴2B=2π3,∴锐角B=π3……2分(2)由tan2B=-3B=π3或5π6①当B=π3时,已知b=2,由余弦定理,得:4=a2+c2-ac≥2ac-ac=ac(当且仅当a=c=2时等号成立)……3分∵△ABC的面积S△ABC=12acsinB=34ac≤3∴△ABC的面积最大值为3……1分②当B=5π6时,已知b=2,由余弦定理,得:4=a2+c2+3ac≥2ac+3ac=(2+3)ac(当且仅当a=c=6-2时等号成立)∴ac≤4(2-3)……1分∵△ABC的面积S△ABC=12acsinB=14ac≤2-3∴△ABC的面积最大值为2-3……1分2、解:(I)由正弦定理得CRcBRbARasin2,sin2,sin2,,0sin.cossin3sin,cossin3)sin(,cossin3cossincossin,cossincossin3cossin,cossin2cossin6cossin2ABAABACBBABCCBBCBACBBCRBARCBR又可得即可得故则因此.31cosB…………6分(II)解:由2cos,2BaBCBA可得,,,0)(,12,cos2,6,31cos222222cacacaBaccabacB即所以可得由故又所以a=c=63、(Ⅰ)解:由5cos5A,10cos10B,得02AB、,,所以23sinsin.510AB,……3分因为2coscos[()]cos()coscossinsin2CABABABAB…6分且0C故.4C…………7分(Ⅱ)解:根据正弦定理得sin6sinsinsin10ABACABBACCBC,…………..10分所以ABC的面积为16sin.25ABACA4、解:(1)由m//n得0cos1sin22AA……2分即01coscos22AA1cos21cosAA或………………4分1cos,AABCA的内角是舍去3A………………6分(2)acb3由正弦定理,23sin3sinsinACB………………8分32CB23)32sin(sinBB………………10分23)6sin(23sin23cos23BBB即5、解:由CBABAC且0)cos(32sin有23sin0cos,0cos3cossin2CCCCC或所以……6分由3,23sin,,13,4CCacca则所以只能有,……8分由余弦定理31,034cos22222bbbbCabbac或解得有当.3sin21,133sin21,3CabSbCabSb时当时6、解:(I)tanC=tan[π-(A+B)]=-tan(A+B)11tantan231111tantan123ABAB∵0C,∴34C……………………5分(II)∵0tanBtanA,∴A、B均为锐角,则BA,又C为钝角,∴最短边为b,最长边长为c……………………7分由1tan3B,解得10sin10B……………………9分由sinsinbcBC,∴101sin510sin522cBbC………………12分7、解:(I)解法一:由正弦定理aAbBcCRsinsinsin2得aRAbRBcRC222sinsinsin,,将上式代入已知coscoscoscossinsinsinBCbacBCBAC22得即20sincossincoscossinABCBCB即20sincossin()ABBC∵ABCBCAABA,∴,∴sin()sinsincossin20∵sincosAB≠,∴,012∵B为三角形的内角,∴B23.解法二:由余弦定理得coscosBacbacCabcab22222222,将上式代入coscosBCbacacbacababcbac2222222222得×整理得acbac222∴cosBacbacacac2222212∵B为三角形内角,∴B23(II)将bacB13423,,代入余弦定理bacacB2222cos得bacacacB2222()cos,∴131621123acac(),∴∴SacBABC△12343sin.8、解析:本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角理得到sinB=23(负值舍掉),从而求出B=3。函数值的制约,并利用正弦定解:由cos(AC)+cosB=及B=π(A+C)得cos(AC)cos(A+C)=32,32cosAcosC+sinAsinC(cosAcosCsinAsinC)=32,sinAsinC=34.又由2b=ac及正弦定理得2sinsinsin,BAC故23sin4B,3sin2B或3sin2B(舍去),于是B=3π或B=23π.又由2bac知ab或cb所以B=3π。9、【解析】(1)解:在ABC中,根据正弦定理,ABCCABsinsin,于是522sinsinBCABCCAB(2)解:在ABC中,根据余弦定理,得ACABBCACABA2cos222于是AA2cos1sin=55,从而53sincos2cos,54cossin22sin22AAAAAA1024sin2cos4cos2sin)42sin(AAA

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功