中考数学压轴题精选-含详细答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

目录1.6因动点产生的面积问题例12012年菏泽市中考第21题例22012年河南省中考第23题例32011年南通市中考第28题例42011年上海市松江区中考模拟第24题例52010年广州市中考第25题例62010年扬州市中考第28题例72009年兰州市中考第29题1.6因动点产生的面积问题例12012年菏泽市中考第21题如图1,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1)、B(2,0)、O(0,0),将此三角板绕原点O逆时针旋转90°,得到三角形A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是第一象限内抛物线上的一个动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积的4倍?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出它的两条性质.图1动感体验请打开几何画板文件名“12菏泽21”,拖动点P在第一象限内的抛物线上运动,可以体验到,当四边形PB′A′B是等腰梯形时,四边形PB′A′B的面积是△A′B′O面积的4倍.请打开超级画板文件名“12菏泽21”,拖动点P在第一象限内的抛物线上运动,可以体验到,当四边形PB′A′B是等腰梯形时,四边形PB′A′B的面积是△A′B′O面积的4倍.思路点拨1.四边形PB′A′B的面积是△A′B′O面积的4倍,可以转化为四边形PB′OB的面积是△A′B′O面积的3倍.2.联结PO,四边形PB′OB可以分割为两个三角形.3.过点向x轴作垂线,四边形PB′OB也可以分割为一个直角梯形和一个直角三角形.满分解答(1)△AOB绕着原点O逆时针旋转90°,点A′、B′的坐标分别为(-1,0)、(0,2).因为抛物线与x轴交于A′(-1,0)、B(2,0),设解析式为y=a(x+1)(x-2),代入B′(0,2),得a=1.所以该抛物线的解析式为y=-(x+1)(x-2)=-x2+x+2.(2)S△A′B′O=1.如果S四边形PB′A′B=4S△A′B′O=4,那么S四边形PB′OB=3S△A′B′O=3.如图2,作PD⊥OB,垂足为D.设点P的坐标为(x,-x2+x+2).232'1111(')(22)22222PBODSDOBOPDxxxxxx梯形.2321113(2)(2)22222PDBSDBPDxxxxx.所以2'''2+2PDBPBADPBODSSSxx四边形梯形.解方程-x2+2x+2=3,得x1=x2=1.所以点P的坐标为(1,2).图2图3图4(3)如图3,四边形PB′A′B是等腰梯形,它的性质有:等腰梯形的对角线相等;等腰梯形同以底上的两个内角相等;等腰梯形是轴对称图形,对称轴是经过两底中点的直线.考点伸展第(2)题求四边形PB′OB的面积,也可以如图4那样分割图形,这样运算过程更简单.'11'222PBOPSBOxxx.22112(2)222PBOPSBOyxxxx.所以2'''2+2PBOPBOPBADSSSxx四边形.甚至我们可以更大胆地根据抛物线的对称性直接得到点P:作△A′OB′关于抛物线的对称轴对称的△BOE,那么点E的坐标为(1,2).而矩形EB′OD与△A′OB′、△BOP是等底等高的,所以四边形EB′A′B的面积是△A′B′O面积的4倍.因此点E就是要探求的点P.例22012年河南省中考第23题如图1,在平面直角坐标系中,直线112yx与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P的横坐标为m.①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为9∶10?若存在,直接写出m的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12河南23”,拖动点P在直线AB下方的抛物线上运动,可以体验到,PD随点P运动的图象是开口向下的抛物线的一部分,当C是AB的中点时,PD达到最大值.观察面积比的度量值,可以体验到,左右两个三角形的面积比可以是9∶10,也可以是10∶9.思路点拨1.第(1)题由于CP//y轴,把∠ACP转化为它的同位角.2.第(2)题中,PD=PCsin∠ACP,第(1)题已经做好了铺垫.3.△PCD与△PCB是同底边PC的两个三角形,面积比等于对应高DN与BM的比.4.两个三角形的面积比为9∶10,要分两种情况讨论.满分解答(1)设直线112yx与y轴交于点E,那么A(-2,0),B(4,3),E(0,1).在Rt△AEO中,OA=2,OE=1,所以5AE.所以25sin5AEO.因为PC//EO,所以∠ACP=∠AEO.因此25sin5ACP.将A(-2,0)、B(4,3)分别代入y=ax2+bx-3,得4230,16433.abab解得12a,12b.(2)由211(,3)22Pmmm,1(,1)2Cmm,得221111(1)(3)42222PCmmmmm.所以2225251595sin(4)(1)55255PDPCACPPCmmm.所以PD的最大值为955.(3)当S△PCD∶S△PCB=9∶10时,52m;当S△PCD∶S△PCB=10∶9时,329m.图2考点伸展第(3)题的思路是:△PCD与△PCB是同底边PC的两个三角形,面积比等于对应高DN与BM的比.而252511coscos(4)(2)(4)5525DNPDPDNPDACPmmmm,BM=4-m.①当S△PCD∶S△PCB=9∶10时,19(2)(4)(4)510mmm.解得52m.②当S△PCD∶S△PCB=10∶9时,110(2)(4)(4)59mmm.解得329m.例32011年南通市中考第28题如图1,直线l经过点A(1,0),且与双曲线myx(x>0)交于点B(2,1).过点(,1)Ppp(p>1)作x轴的平行线分别交曲线myx(x>0)和myx(x<0)于M、N两点.(1)求m的值及直线l的解析式;(2)若点P在直线y=2上,求证:△PMB∽△PNA;(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“11南通28”,拖动点P在射线AB上运动,可以体验到,当直线MN经过(0,2)点时,图形中的三角形都是等腰直角三角形;△AMN和△AMP是两个同高的三角形,MN=4MP存在两种情况.思路点拨1.第(2)题准确画图,点的位置关系尽在图形中.2.第(3)题把S△AMN=4S△AMP转化为MN=4MP,按照点M与线段NP的位置关系分两种情况讨论.满分解答(1)因为点B(2,1)在双曲线myx上,所以m=2.设直线l的解析式为ykxb,代入点A(1,0)和点B(2,1),得0,21.kbkb解得1,1.kb所以直线l的解析式为1yx.(2)由点(,1)Ppp(p>1)的坐标可知,点P在直线1yx上x轴的上方.如图2,当y=2时,点P的坐标为(3,2).此时点M的坐标为(1,2),点N的坐标为(-1,2).由P(3,2)、M(1,2)、B(2,1)三点的位置关系,可知△PMB为等腰直角三角形.由P(3,2)、N(-1,2)、A(1,0)三点的位置关系,可知△PNA为等腰直角三角形.所以△PMB∽△PNA.图2图3图4(3)△AMN和△AMP是两个同高的三角形,底边MN和MP在同一条直线上.当S△AMN=4S△AMP时,MN=4MP.①如图3,当M在NP上时,xM-xN=4(xP-xM).因此222()4(1)xxxx.解得1132x或1132x(此时点P在x轴下方,舍去).此时1132p.②如图4,当M在NP的延长线上时,xM-xN=4(xM-xP).因此222()4(1)xxxx.解得152x或152x(此时点P在x轴下方,舍去).此时152p.考点伸展在本题情景下,△AMN能否成为直角三角形?情形一,如图5,∠AMN=90°,此时点M的坐标为(1,2),点P的坐标为(3,2).情形二,如图6,∠MAN=90°,此时斜边MN上的中线等于斜边的一半.不存在∠ANM=90°的情况.图5图6例42011年上海市松江区中考模拟第24题如图1,在平面直角坐标系xOy中,直角梯形OABC的顶点O为坐标原点,顶点A、C分别在x轴、y轴的正半轴上,CB∥OA,OC=4,BC=3,OA=5,点D在边OC上,CD=3,过点D作DB的垂线DE,交x轴于点E.(1)求点E的坐标;(2)二次函数y=-x2+bx+c的图象经过点B和点E.①求二次函数的解析式和它的对称轴;②如果点M在它的对称轴上且位于x轴上方,满足S△CEM=2S△ABM,求点M的坐标.图1动感体验请打开几何画板文件名“11松江24”,拖动点M在抛物线的对称轴上运动,观察面积比的度量值,可以体验到,有两个时刻,面积的比值等于2.思路点拨1.这三道题目步步为赢,错一道题目,就要影响下一道的计算.2.点M在抛物线的对称轴上且位于x轴上方,要分两种情况讨论,分别为点M在线段FB和FB的延长线上.因为用点M的纵坐标表示△ABM的底边长,因点M的位置不同而不同.满分解答(1)因为BC∥OA,所以BC⊥CD.因为CD=CB=3,所以△BCD是等腰直角三角形.因此∠BCD=45°.又因为BC⊥CD,所以∠ODE=45°.所以△ODE是等腰直角三角形,OE=OD=1.所以点E的坐标是(1,0).(2)①因为抛物线y=-x2+bx+c经过点B(3,4)和点E(1,0),所以934,10.bcbc解得6,5.bc所以二次函数的解析式为y=-x2+6x-5,抛物线的对称轴为直线x=3.②如图2,如图3,设抛物线的对称轴与x轴交于点F,点M的坐标为(3,t).CEMMEFCOEOFMCSSSS梯形111(4)321442222ttt.(ⅰ)如图2,当点M位于线段BF上时,ttSABM42)4(21.解方程)4(242tt,得58t.此时点M的坐标为(3,58).(ⅱ)如图3,当点M位于线段FB延长线上时,42)4(21ttSABM.解方程)4(242tt,得8t.此时点M的坐标为(3,8).图2图3考点伸展对于图2,还有几个典型结论:此时,C、M、A三点在同一条直线上;△CEM的周长最小.可以求得直线AC的解析式为445yx,当x=3时,85y.因此点M(3,58)在直线AC上.因为点A、E关于抛物线的对称轴对称,所以ME+MC=MA+MC.当A、M、C三点共线时,ME+MC最小,△CEM的周长最小.例52010年广州市中考第25题如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12yxb交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.图1动感体验请打开几何画板文件名“10广州25”,拖动点D由C向B运动,观察S随b变化的函数图象,

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功