1九年级上册数学课本知识点归纳第21章一元二次方程一、学习目标1、理解一元二次方程的概念2、学会一元二次方程的解法3、了解方程的根与系数的关系4、掌握一元二次方程的实际应用二、重点一、一元二次方程1、一元二次方程含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。2、一元二次方程的一般形式)0(02acbxax,其中2ax叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。二、降次----解一元二次方程1.降次:把一元二次方程化成两个一元一次方程的过程(不管用什么方法解一元二次方程,都是要一元二次方程降次)2、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如x2=b或bax2)(的一元二次方程。根据平方根的定义可知,ax是b的平方根,当0b时,bax,bax,当b0时,方程没有实数根。3、配方法:配方法的理论根据是完全平方公式222)(2bababa,把公式中的a看做未知数x,并用x代替,则有222)(2bxbbxx。配方法解一元二次方程的步骤是:①移项、②配方(写成平方形式)、③用直接开方法降次、④解两个一元一次方程、⑤判断2个根是不是实数根。4、公式法:公式法是用求根公式,解一元二次方程的解的方法。一元二次方程)0(02acbxax的求根公式:)04(2422acbaacbbx2当acb420时,方程有两个实数根。当acb42=0时,方程有两个相等实数根。当acb42<0时,方程没有实数根。5、因式分解法:先将一元二次方程因式分解,化成两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解叫因式分解法。这种方法简单易行,是解一元二次方程最常用的方法。三、一元二次方程根的判别式根的判别式:一元二次方程)0(02acbxax中,acb42叫做一元二次方程)0(02acbxax的根的判别式,通常用“”来表示,即acb42四、一元二次方程根与系数的关系如果方程)0(02acbxax的两个实数根是21xx,,由求根公式)04(2422acbaacbbx可算出abxx21,acxx21。第22章二次函数一、学习目标1、理解二次函数的概念2、学会画二次函数的图象3、掌握二次函数的性质4、学会函数图象的平移5、能够运用二次函数解决实际问题二、重点1、二次函数的解析式①一般式:)0(2acbxaxy(a、b、c为常数),则称y为x的二次函数。②顶点式:)0()(2akhxay③交点式(与x轴):)0())((21axxxxay2、抛物线的性质①二次函数的图像是一条永无止境的抛物线。②a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向3向下。a还可以决定开口大小,a越大开口就越小,a越小开口就越大。③抛物线是轴对称图形。对称轴为直线abx2.④对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)⑤抛物线有一个顶点P,坐标为P(abacab44,22)当abx2时,P在y轴上;当042acb时,P在x轴上。⑥二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。⑦一次项系数b和二次项系数a共同决定对称轴的位置:Ⅰ.当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是02ab-b/2a0,所以b/2a要大于0,所以a、b要同号Ⅱ.当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是02ab-b/2a0,所以b/2a要小于0,所以a、b要异号事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。⑧常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)⑨二次函数的增减性抛物线)0(2acbxaxy,若a0,当abx2时,y随x的增大而减小;当abx2时,y随x的增大而增大.若a0,当abx2时,y随x的增大而增大;当abx2时,y随x的增大而减小.抛物线)0(2acbxaxy的最值:如果a0(a0),则当abx2时,y最小(大)值=abac442.3、二次函数2axy,)0()(2akhxay,)0(2acbxaxy(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:4函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0x(y轴)(0,0)kaxy20x(y轴)(0,k)2hxayhx(h,0)khxay2hx(h,k)cbxaxy2abx2(abacab4422,)4、二次函数与一元二次方程二次函数(以下称函数))0(2acbxaxy当y=0时,二次函数为关于x的一元二次方程(以下称方程),即0(02acbxax)此时,函数图像与x轴有无交点即方程有无实数根;函数与x轴交点的横坐标即为方程的根。抛物线)0(2acbxaxy的图象与坐标轴的交点:Δ>0,图象与x轴交于两点:(ab2,0)和(ab2,0);Δ=0,图象与x轴交于一点:(ab2,0);Δ<0,图象与x轴无交点;5.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:)0(2acbxaxy(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:)0()(2akhxay.(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:)0())((21axxxxay.6.二次函数的应用二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.5第23章旋转一、学习目标1、理解旋转、旋转中心、旋转角、中心对称的概念2、学会找旋转角及画中心对称图形3、掌握中心对称的性质4、学会关于原点对称的点的坐标5、了解图形旋转的应用二、重点一、旋转1、定义:把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。2、性质(1)对应点到旋转中心的距离相等。(2)对应点与旋转中心所连线段的夹角等于旋转角。⑶旋转前后的图形全等。二、中心对称1、定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。2、性质(1)关于中心对称的两个图形是全等形。(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。3、判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。4、中心对称图形:把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。5、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)6、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)。7、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,6即点P(x,y)关于y轴的对称点为P’(-x,y)。第24章圆一、学习目标1、理解圆的几何定义与圆有关的概念2、掌握垂径定理、切线的判定定理、切线长定理以及圆周角定理3、学会判断点、直线、圆与圆的位置关系4、会计算弧长、扇形的面积及圆锥的侧面积和全面积二、重点一、圆的相关概念1、圆的定义:在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。2、圆的几何表示:以点O为圆心的圆记作“⊙O”,读作“圆O”二、弦、弧等与圆有关的定义(1)弦:连接圆上任意两点的线段叫做弦。(如图中的AB)(2)直径:经过圆心的弦叫做直径。(如途中的CD)直径等于半径的2倍。(3)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。(4)弧、优弧、劣弧:圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)三、垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。推论2:圆的两条平行弦所夹的弧相等。四、圆的对称性71、圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。2、圆的中心对称性:圆是以圆心为对称中心的中心对称图形。五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角:顶点在圆心的角叫做圆心角。2、弦心距:从圆心到弦的距离叫做弦心距。3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。六、圆周角定理及其推论1、圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。七、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:dr点P在⊙O内;d=r点P在⊙O上;dr点P在⊙O外。八、过三点的圆1、过三点的圆:不在同一直线上的三个点确定一个圆。2、三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外接圆。3、三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。4、圆内接四边形性质(四点共圆的判定条件):圆内接四边形对角互补。九、反证法先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。十、直线与圆的位置关系直线和圆有三种位置关系,具体如下:8(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交dr;直线l与⊙O相切d=r;直线l与⊙O相离dr;十一、切线的判定和性质1、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。2、切线的性质定理:圆的切线垂直于经过切点的半径。十二、切线长定理1、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。2、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等