ExperimentalStudyonCompressivePropertiesofUltrahighToughnessCementitiousComposites1LayoutBackgroundExperimentalProgramExperimentalResultsComparisonofcompressivestrengthbetweenUHTCCandmatrixComparisonofstrainatpeakstressbetweenUHTCCandmatrixAtheoreticalstress-straincurvemodelConclusions2BackgroundNumbersofstudiescarriedoutpermeabilityandcarbonationpropertiestensileandbendingpropertiesfreeze-thawpropertiesnouniformtestavailableforthecompressivepropertiesstructuralapplicationsarelimited3ExperimentalProgramForserialnumberfrom1to5,thesand-binderratiowasvariedfrom30to45%withotherparametersconstant.Forserialnumberfrom6to9,thewater-binderratiowasvariedfrom28to35%withotherparametersconstant.Forserialnumberfrom10to13,themineraladmixture-binderratiowasvariedfrom50to80%withotherparametersconstant.4ExperimentalProgramTable1.SpecimenInformationofEachGroupTestseriesSpecimenshapeSpecimensize/mmSpecimennumberSuffixrepresentationUHTCCPrism40×40×1609ap40uMatrixPrism40×40×1609ap40m5ResultsComparisonofcompressivestrengthFig.1.ComparisonofprismcompressivestrengthbetweenUHTCCandmatrix6ResultsComparisonofstrainatpeakstressFig.3.ComparisonofstrainatpeakstressbetweenUHTCCandmatrix7TheoreticalmodelAscendingbranch:12ccStrainhardeningbranch:Descendingbranch:Horizontalbranch:12ccc3232(0.20.8)ccccc3cc3232(0.20.8)ccccc3cc0.2c8Comparisonofstress-straincurvesThechartshowsthecomparisonbetweenthepredictionsandthetestdataofUHTCCThepredictedcurvesareobtainedbyusingtheexperimentalstrainvalueatpeakstressinsteadofthefixedvalueof0.002.9Comparisonofcompressivestrength10ConclusionsTheprismcompressivestrengthdecreasesbecauseofthefiberaddition.ThestrainatpeakstressislargerthanthatofmatrixbecauseofthefiberadditionAtheoreticalmodelisprovidewhichisneededformodelingitsmechanicalbehaviororforpermittingitsuseinvariousstructuralapplications.11ThankYou!12